This question paper contains 7 printed pages]

* Your Roll No.....

5181

B.Sc.(Prog.) PHYSICAL SCIENCES/I Sem. B

Paper PHPT-101: MECHANICS

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all.

Question No. 1 is compulsory.

Attempt Four questions from the rest of the paper.

- Attempt any five of the following:
 - (a) For a constant vector \overrightarrow{a} , prove that $\nabla(\overrightarrow{a} \cdot \overrightarrow{r}) = \overrightarrow{a}$,

where \vec{r} is the position vector.

- (b) Prove that $\nabla \cdot \overrightarrow{r} = \frac{2}{r}$, where \overrightarrow{r} is the position vector.
- (c) Explain what do you understand by elastic and nonelastic collisions.

5×3=15

- (d) For a particle of mass m, position $\vec{r} = 12\vec{i} + 8\vec{j}$ and velocity $\vec{v} = 6\vec{i}$, calculate its angular momentum about
 - the origin.
 - (e) Calculate the mass of a proton of rest mass 1.67×10^{-24} gm moving with a velocity 0.9c.
- (f) Find whether the force given by

$$\vec{F} = (y^2 - x^2)\vec{i} + 2xy\vec{j}$$

is conservative or non-conservative.

mass of a triangular plate lie ?

energy of 1 eV.

(g)

(h) Calculate what quantity of mass would possess an

What is centre of mass ? Where does the centre of

3)

5181

- (a) State and prove Stokes' theorem for vector fields. 10
- (b) Prove the identity:

$$\vec{\nabla} \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \cdot \vec{A}) - \vec{A} \cdot (\nabla \cdot \vec{B})$$

- (a) What do you understand by inertial frame and Galilean
 - invariance? Show that while length and acceleration
 - are Galilean invariant, velocity is non-invariant.
- (b) Two inertial frames S and S' have their axes parallel

and the position of the origin O' of the frame S' relative

to origin O of the frame S is given by

$$\overrightarrow{r_0} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$$
 at time $t = 0$. If the position of

a point P in the frame S be (3, 4, 5), calculate its

position in the frame S'.

(c)

- A bomb of mass 4 M explodes in flight at a time when its velocity is $5\vec{i} + 4\vec{j}$. It splits into two fragments of masses M. and 3 M and the smaller mass M is observed to fly with a velocity $10\vec{i} + 100\vec{j}$ just after the explosion. Calculate the velocity of the targer fragment of mass 3M just after the explosion:
- (a) State Kepler's laws of planetary motion.

a force.

is zero.

- (b) What is a central force? Give two examples of such
- (c) What is a conservative force? How is it related to potential energy? Show that in the case of a conservative force, the work done around a closed path

- 5. (a) Define modulus of rigidity. What are its SI units? 3
 - (b) Derive an expression for the couple required to twist one end of a cylindrical wire when its other end is fixed.
 - (c) An iron wire of length 1 m and radius 0.5 mm twists through 0.5 radians when equal and opposite torques of 3×10^4 dynes cm are applied at its ends. Calculate the value of modulus of rigidity of the iron wire. 3
- 5. (a) State theorem of parallel and perpendicular axes of moment of inertia.
 - (b) Define the terms 'radius of gyration' and 'moment of inertia'. Determine the 'moment of inertia' of a cylinder about an axis passing through its centre and perpendicular to its length.

- 7. (a) What was the motivation behind Michelson-Morley
 - experiment? What conclusions were drawn from the
 - experiment regarding the existence of ether ?
 - (b) Calculate the expected fringe shift in the Michelson-

Morley experiment in which monochromatic light

source of wavelength 5900 Å was used and the

effective length of each path was 11 m.

(Given : velocity of the earth = 3×10^4 ms⁻¹ and

 $c = 3 \times 10^8 \text{ ms}^{-1}$).

c) A π meson, moving with velocity 0.99c, decays with

a mean lifetime of 2.6×10^{-8} s as measured in its

proper or rest frame. Calculate its lifetime as measured

in the laboratory frame.

5

- 8. (a) What do you mean by the divergence of a vector field?

 Obtain an expression for the divergence of a vector field in Cartesian coordinates.
 - (b) By applying Green's theorem in a plane, show that the area bounded by a simple closed curve C in the x-y plane is given by $\frac{1}{2} \oint (x \, dy y \, dx)$.