5184-P

Your Roll No.....

B.Sc. Prog./Sem. I

В

MATHEMATICAL SCIENCES

Paper ORC-1: Operational Research Concurrent-II

(Admissions of 2011 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

- (a) Describe the branch and bound method for the solution of integer programming problem. (7)
 - (b) A salesman is planning to tour cities B, C, D and E starting from his home city A. The intercity distances are shown in the following table:

City	Α	В	C	D	Е -
Α .		103	188	136	38
В	103	-	262	176	52
С	188	262	. —	85	275
D	136	176	85	-	162
E	38	52	2.75	162	-

How should he plan his tour so that (i) he visits each of the cities only once and (ii) travels the minimum distance. (8)

2. Solve the following IPP

Maximize $Z = x_1 + x_2$

subject to the constraints l

$$3x_1 + 2x_2 \le 5$$
$$x_2 \le 2$$

 $x_1, x_2 \ge 0$ and x_1 is an

integer.

(15)

 (a) Consider the problem of assigning five operators to five machines with the following assignment cost matrix

		Machines					
		I	H	III	IV	V	
	Α	10	5	13	15	16	-
Operators	В	3	9	18	3	6 ·	
	C	10	7	2	2	2	
	D	5	11	9	7	12	
	E .	7.	9	10	4	12	

What are the operator-machine pairs that shall minimize the cost? (7)

(b) The following table gives the cost of transporting material from supply points A, B, C and D to demand points E, F, G, H and I.

				To			
	į	E	F	G	H	I	
•	Α	8	10	12	17	15	
From	В	15	13	18	11	9	
	С	14	10 13 20 19	6	10	13	
	D	13	19	. 7	5	12	

The present allocation is as follows:

A to E 90; A to F 10; B to F 150; C to F 10; C to G 50; C to I 120; D to H 210; D to I 70.

Check if this allocation is optimum. If not, find an optimum schedule. (8)

4. (a) Distinguish between PERT and CPM. What is a critical path? Why is it so important in scheduling and controlling large projects? Can a critical path change during the course of a project?

$$(2+1+2+1=6)$$

(b) A small project is composed of 7 activities, whose time estimates are listed in the table below. Activities are identified by their beginning (i) and ending (j) node numbers.

5184-P

Activity	Estimated Duration (weeks) -				
(i-j)	Optimistic	Most likely	Pessimistic		
1 – 2	1	1 .	7		
1 - 3	1	4	7		
1 – 4	2	2	8		
2 – 5	1	1	1		
3 – 5	2	5	14		
4 – 6	2	5	8		
56	3	6	15		

- (i) Draw the network diagram of the activities in the project. (3)
- (ii) Find the expected duration and variance for each activity. What is the expected project length?
 (3)
- (iii) Calculate the variance and standard deviation of the project length. (2)
- (iv) Identify the critical path(s) of the project. (1)
- 5. The following is a table showing details of a project:

5184-P

Activity	Immediate	Normal		Crash	
	Predecessor	Time	Cost	Time	Cost
,	,	(weeks)	(Rs' 000)	(weeks)	(Rs' 000)
A		10	20	7 ·	30
В	- ,	8	15	6	20
С,	В	5	8	4	14
. D	В	6	11	4	15
E	В	8	9	5	15
F	E	. 5	· 5	4	8
G	A,D,C	12	3	8	4

The indirect is Rs. 400/day. Find the optimum duration and associated minimum project cost. (15)

- 6. (a) Define a queueing system. Give example of queueing systems with customer-server machanism, one each for:
 - (i) both are human beings
 - (ii) only one is human being and
 - (iii) none is a human being (3+3)
 - (b) In a railway marshalling yard, goods trains arrive at the rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and service time distribution is also exponential with an average of 36 minutes, calculate

- (i) the mean queue size and
- (ii) the probability that the queue size exceeds 10. (4+5)
- 7. Derive the steady state distribution of the number of units in the system for a generalized birth-death queueing model. (15)