[This question paper contains 4 printed pages.]

Your Roll No.

5184-L

R

B.Sc. (Prog.) Structure Courses Mathematical Sciences/II Sem.

Paper: STP-202: Statistical Method-I (Admissions of 2011 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any Six questions.

All questions carry equal marks.

 (a) The distribution function of a random variable X is given by:

$$F(x) = \begin{cases} 1 - (1+x)e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Find (i) p.d.f of X,

(ii)
$$P(x \ge 2)$$
, (iii) $P(-2 < x \le 3)$.

(b) A random variable X has the following probability function:

х	0	1	2	3
p(x)	0.1	0.3	0.5	0.1

If
$$Y = X^2 + 2X$$
, find

- (i) the probability function of Y
- (ii) mean and variance of Y.

6

2. (a) Let the p.d.f. of a random variable X be:

$$f(x) = \begin{cases} \frac{1}{6}, & -3 \le x \le 3, \\ 0, & \text{otherwise.} \end{cases}$$

Find the p.d.f. of (i) $Y = X^2$, (ii) Y = 3X + 1. 6

(b) The joint probability density function of the two dimensional random variable (X, Y) is given by:

$$f(x, y) = x^3y^3/16, \ 0 \le x \le 2, \ 0 \le y \le 2.$$

Find (i) marginal p.d.f. of X.

(ii) conditional p.d.f. of Y given X.

(iii)
$$P(X = 1; Y = 1)$$
. 6½

- (a) State and prove addition theorem of expectation for two random variables. Hence, find mean of Y = 2X₁ 3X₂ where X₁, X₂ are random variables with means 3 and 5 respectively.
 - (b) Find the expectation of the number of failures preceding the first success in an infinite series of independent trials with constant probability p of success in each trial.
- 4. (a) Define the characteristic function of a random variable. Show that the characteristic function of the sum of two independent random variables is equal to the product of their characteristic functions. 6

(b) Let the random X assume the value r with probability law:

$$P(X = r) = pq^{r-1}, r = 1, 2, 3, ...$$

Find the m.g.f. of X and hence its mean and variance.

6½

(a) Obtain the mode of Poisson distribution with mean
 λ. Hence find it if

(i)
$$\lambda = 3.5$$
, (ii) $\lambda = 5$. $6\frac{1}{2}$

- (b) Define negative binomial distribution. Obtain Poisson distribution as a limiting case of the negative binomial distribution.
- 6. (a) Define 'Lack of memory' property. Which discrete distribution satisfies this property? Give the proof also.
 - (b) Let $X \sim B(n, p)$. Show that

$$\mu_{r+1} = pq \left(n_r \mu_{r-1} + \frac{d\mu_i}{dp} \right)$$

Where μ_r is r^{th} moment about mean. Hence find variance.

7. (a) Let $X_i \sim \text{gamma}(\lambda_i, a)$, i = 1, 2, ..., n be independent random variables. Obtain the distribution of $X_1 + X_2 + ... + X_n$ and identify it. 6

- (b) For a normal distribution with mean μ and variance σ^2 , show that the mean deviation from the mean ' μ ' is equal to $\sigma \sqrt{2/\pi}$. What will be the mean deviation from median?
- 8. (a) A random variable X takes the values 1, 1, 3, 5 with associated probabilities 1/6, 1/6, 1/6 and 1/2. Find by direct computation P(|X 3| ≥ 1) and also find an upper bound to this probability by applying Chebychev's inequality.
 - (b) State Central limit theorem for iid variables.

 Let X_1 , X_2 , ... X_n be iid Poisson variates with parameter λ . Use central limit theorem to find asymptotic distribution of $S_n = X_1 + X_2 + ... + X_n$.

 61/2

Ò