Sl. No. of Ques. Paper

: 1884

GC-3

Unique Paper Code

: 42171111

Name of Paper

: Inorganic Chemistry

Name of Course

: B.Sc. (Prog.) Applied Life Science (CBCS)

with Agrochemicals & Pest Management

Semester

: I

Duration:

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all. Question No. 1 is compulsory.

1.	Answer	the	foll	owing	briefly:
					O

(a) Discuss van-Arkel De-Boer method of purification for metals.

2

- (b) Write down the shape as well as hybridization for the following:
 - (i) SO_{4}^{2}
 - (ii) BCl₃

(iii) NH₄

3

- (c) Which of the following will be having disassociation energy, O_2 or O_2^+ ?
- 2

(d) Why is large number of transition metal complexes colored?

2

(e) Explain the term 'node'. Find the number of nodes present in 3p and 1s orbital.

2

(f) Write down the electronic configuration for Cr (At No=24) and Cu (At No=29).

. 2

(g) Why are orbitals like 1p and 2p and 2d not possible?

Why are these considered anomalous?

2

2. (a) Discuss Lanthanide contraction. Give any two consequences of it.

4

- (b) With which element does Lithium show diagonal relationship and why? Discuss the anomalous behavior of Lithium (any two).
- (c) Why can no two electrons in an orbital have all the quantum numbers same? Write down all the quantum numbers for the 5th electron of Boron atom.
- (d) Discuss Bohr's theory for hydrogen atom. Also explain its limitations.

4

3.	(a)	Discuss dual nature of an electron and also derive de Broglie relationship for electron.	an 4
	(b)	Explain electrolytic refining as a method of purification of metals.	4
	(c)	Differentiate between ionic and covalent bonding with examples.	4
	(d)	What will be the shape of the orbital with value of $l=0$ and $l=2$?	3
4.	(a)	NaCl conducts electricity when in molten or aquated form. Discuss.	2
	(b)	What do you understand by linear combination of atomic orbitals (LCAO)? How do and p orbitals combine together to give bonding, anti-bonding and non-bond orbitals?	lo s ling 4
	(c)	Discuss the concept of multi center bonding with respect to diborane molecule. A give any two applications of it.	dso 4
	(d)	Calculate the uncertainty in the position of a particle when uncertainty in momentum is 2×10^{-3} gcmsec ⁻¹ . $(h=6.62 \times 10^{-27} \text{ erg sec and } \pi=3.14)$	its
	(e)	Which one will be harder, NaCl or MgCl ₂ ? Explain.	2
5. Wr	Wri	te notes on the following: (any three)	
	(a)	Molecular orbital diagram for NO molecule	
	(b)	Catalytic properties of transition metals	
	(c)	Lattice energy	
	(d)	Ellingham diagrams (carbon as reducing agent)	
	(e)	Hydrometallurgy	
	(f)	Inert pair effect.	×5
6.	(a)	Discuss the shape and hybridization of the following species using VSEPR theory: (i) XeF ₄	
	,	(ii) H ₃ O ⁺	×2
	(b)	Give values for all the quantum numbers for the following:	
		(i) 5d (ii) 4p	2
	(c)	Why are alkali metals strong reducing agents? Discuss why lithium is best reducing agents.	
	(~)	agent in its group even though its ionization potential is highest in its group.	ng 4
	(d)	Why are sulphide ores firstly converted to oxides before reduction by carbon?	3