This question paper of	contains 4+2 printed pages]			
		Roll No.			
S. No. of Question Pap	per : 61	t			
Unique Paper Code	: 217161		G		
Name of the Paper	: Chemistry-I (CHPT	-101)			
Name of the Course	: B.Sc. (Prog.) Physic	al Science/Life Sc	ience/Applied Life So	eience	
Semester	: I				
Duration: 3 Hours			Maximum N	1arks : 75	
(Write your	Roll No. on the top immedi	ately on receipt of	this question paper.)		
	Attempt any the	hree questions.			
Question No. 1 carries 13.5 marks and Q. No. 2,					
Q. No. 3, Q. No. 4 carries 12 marks each.					
Use separate answer sheet for Section A and Section B.					
Section A					
1. (a) Write short	rt notes on (any three):			3×2.5	
. (i) Quan	ntum numbers				
(ii) Dipo	le moment				
(iii) LCA	O		•		
(iv) Reso	onance energy.				
(b) Arrange th	ne following in order of inci	reasing melting po	int giving reason:	2×1.5	
(i) LiI, I	LiBr, LiCl, LiF	-			
(ii) NaCl	l, CuCl.				

	(c)	Give reasons:	×1.5
		(i) KI is soluble in ethyl alcohol, whereas KCl is insoluble.	
		(ii) ZnCl ₂ is more soluble in organic solvents than MgCl ₂ .	
2.	(a)	Write Schrodinger wave equation and define each term involved in it.	4
	(<i>b</i>)	Give physical significance of ψ and ψ^2 .	2
•	(c)	What are Eigen values ?	2
	(d)	Why 1s orbital is spherically symmetrical?	2
	(e)	Normalization of wave function.	2
3.	(a)	Write Born-Lande equation. Give the significance of terms involved in it.	4
	(b)	Calculate the heat of formation of KF from its elements from the following data by	the
		use of Born-Haber cycle:	5
		Sublimation energy of potassium (S) = 87.8 kJ mol^{-1}	•
		Dissociation energy of F_2 (D) = 158.9 kJ mol ⁻¹	
		Ionization energy of K(g) (I) = $414.2 \text{ kJ mol}^{-1}$	
		Electronic affinity for F(g) (E) = $-334.7 \text{ kJ mol}^{-1}$	
		Lattice energy of KF (U_0) = -807.5 kJ mol ⁻¹	
	(c)	Draw radial probability distribution curve for 3s, 3p and 3d orbitals.	3.

3) 61

- 4. (a) Draw molecular orbital diagram of CO or N₂. Write its configuration and find its bond order.
 - (b) Write the molecular orbital configuration of O_2 , O_2^+ , O_2^- and O_2^{2-} and arrange them in increasing order of their bond lengths.
 - (c) Predict the shapes of the following molecules using hybridization:
 - (i) CH₄
 - (ii) SnCl₂
 - (iii) ClF₃
 - (iv) XeF₂
 - (d) Calculate the % ionic character of HF (Given EN of H = 2.1, F = 4.0).

Section B

(Inorganic Chemistry/Organic Chemistry)

Attempt any three questions.

Question No. 1 carries 13.5 marks and Q. No. 2,

Q. No. 3, Q. No. 4 carries 12 marks each.

- 1. (a) The rate of nitration of toluene is greater than that of benzene. Explain giving reasons.
 - (b) Which is more basic Pyrrole or Pyridine? Explain.
 - (c) Classify the following species as electrophiles or nucleophiles:

1

(d) Arrange the following in the order of increasing stability. (Give reasons):

(e) What are the conditions for a compound to be aromatic. On this basis explain which of the following compounds are aromatic? 2,2,2,4,3.5

- 2. (a) Draw the various conformations of 1,2-ethanediol (HO-CH₂-CH₂-OH) in Newman projection formulae and explain their relative order of stability.
 - (b) Write the most stable conformation of Methyl cyclohexane. Explain.
 - (c) Which of the following compound exhibit geometrical isomerism. Assign E/Z configuration to them?

$$H_3C$$
 — CH_3 H_3C CH_3 CH_3 CH_3

- Write the tautomers of the following: (*d*)
 - *(i)* CH₃CHO
 - $CH_3CH_2NO_2$ (ii)

3,4,3,2

Convert the following in Fischer projection and assign R/S configuration: 3.

- Differentiate between meso compound and racemic mixture. (b)
- Give the mechanism of bromination of cis 2-butene. Give the stereochemistry of the product (c) formed. 6,2,4
- Write the reactions involved when 1-butene is made to undergo the following reactions: (a)
 - Hydroboration-oxidation (1)
 - Oxymercuration-Demercuration (2)
 - Acid catalysed hydration (3)
 - Complete the reactions: (*b*)

(i)
$$H_3C \longrightarrow CH_2 + O_3 \xrightarrow{CH_2Cl_2} ? \xrightarrow{Zn/H_2O} ?$$

5

j

P.T.O.

O.

$$(ii) \quad H_{3}C \xrightarrow{CH_{3}} CH_{3} \xrightarrow{H_{2}SO_{4}} CH_{3} \xrightarrow{CH_{3}} OH$$

(iii)
$$H_3C$$
 CH_2 H_2 $Peroxide$

(iv)
$$CH_3 + H_2 \xrightarrow{Pt/C}$$

(c) Give the chemical method to distinguish between ethane and ethyne. (Reaction also). 6,4,2