4601-A

Your Roll No.

B.Sc. Prog. / II

AS

Paper CH-202: CHEMISTRY

(Admissions of 2007 and before)

Time: 3 hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Use separate answer-sheets for Sections A and B.

Use of calculators is allowed.

Log tables will be provided, if asked for.

Section A
(Organic Chemistry)

Marks: 50

Answer four questions in all. Question No. 1 is compulsory.

1. (a) Identify the products(s) of following reactions:

(i)
$$C_6H_5CHO+CH_3NO_2$$
 KOH

$$(ii) \quad \stackrel{CH_3}{\longleftrightarrow} \quad +HBr \longrightarrow$$

$$(iv) \qquad \qquad \underbrace{\text{NH}_2}_{\text{Br}/\text{CCL}_4}$$

$$(\nu)$$
 (CH₃)₃C-Cl $\xrightarrow{\text{OH}^{9}}$

$$(vi) CH_3-CH_1-CH_2-CH_3 \xrightarrow{Conc. H_2SO_4}$$

- (b) Write the reactions involved in the reduction of nitrobenzene under acidic, neutral and alkaline conditions.
- (c) What happens when toluene is treated with chromyl chloride? 6,6,2

2. Explain giving reasons why:

- (a) Only α -hydrogen atoms in aldehyde and ketone are involved in aldol condensation.
- (b) Alkynes undergo nucleophilic addition.
- (c) Conjugated dienes are more stable than isolated dienes.
- (d) Nitration of bromobenzene is much faster than
 bromination of nitrobenzene.

- 3. (i) Outline the mechanism of formation and structures of products from the reaction of HBr with—
 - (a) 3-methyl-1-butene
 - (b) 3,3-dimethyl-1-butene.
 - (ii) Giving reason arrange the following in increasing order of reactivity:
 - (a) Towards S_N^1 reaction:

- (b) Towards electrophilic substitution:
 - Phenol, benzene, toluene, nitrobenzene. 4,8
- 4. (i) Write the possible monosubstitution products that would be obtained by chlorination of isopentane at 300°C. Which isomer would you expect to predominate? Give mechanism.
 - (ii) How will you carry out the following conversion?
 - (a) 1-chloropentane to 1-bromopentane

- (b) 1-chloropentane to 2-chloropentane
- (c) 1-chloropentane to 1,2-dichloropentane
- (d) Aniline to p-bromoaniline.

4,8

- 5. (a) Explain why a >C=O group of esters does not undergo nucleophilic addition reactions.
 - (b) How will you prepare 1-butanol and 2-butanol from 1-butene?
 - (c) Describe a mechanism for formation of benzyl chloride from toluene by photochlorination.
 - (d) Name one isomer of octane which on chlorination will give only one octyl chloride. 3,4,3,2
- 6. (i) Give the reactions which support the existence of ethyl acetoacetate in keto and enol form.
 - (ii) Give synthesis of 3-methyl uracil from ethyl acetoacetate.
 - (iii) Outline the following rearrangement reactions:
 (a) pinacol-pinacolone, (b) Beckmann. 6,2,4

SECTION B Marks: 25 (Physical Chemistry)

Attempt any two questions.

Calculator may be allowed.

R=8.314J/K/mol

- 7. (a) Write short note on Kohlraush's Law of independent migration of ions. How does it help in determining the equivalent conductance at infinite dilution of weak electrolytes?
 - (b) The conductivity of a saturated solution of CaF₂ at 18°C was found to be $4 \cdot 2 \times 10^{-5}$ ohm⁻¹ cm⁻¹. The conductivity of water used for making the solution was $2 \cdot 0 \times 10^{-6}$ ohm⁻¹ cm⁻¹. The equivalent conductivities at infinite dilution of Ca²⁺ and F⁻ ions are 52·0 and 48·0 ohm⁻¹ cm² equiv⁻¹, respectively. Calculate solubility product and solubility in gram/litre of CaF₂.
 - (c) At a certain temperature, the degree of dissociation of pure water is found to be 1.81×10^{-9} . Calculate ionic product and dissociation constant of water at this temperature.
- 8. (a) What is emf of a cell? Describe the method of measuring emf of an electrochemical cell.
 - (b) How is pH of a solution determined by quinhydrone electrode and what are its limitations?
 - (c) Write the cathodic, anodic half cell reactions and the cell reaction for the following cell:

Pt $|H_{2(g)}$ NaOH satd. with $HgO_{(s)}|Hg(t)|$ Pt. $2_{1/2}$

- (d) Write the expression for activities of MgCl₂ and CuSO₄ in terms of their molalities and mean ionic activity coefficients.
- 9. (a) Derive a relationship between K_p , K_c and K_x . State the condition for which $K_p = K_c = K_x$.
 - (b) Apply Le Chatelier's Principle to predict the effect of temperature and pressure on the following reactions:

$$CaCO_3(s) \stackrel{\longrightarrow}{\longrightarrow} CaO(s) + CO_2(g)$$

$$\Delta H = -180 \cdot 5 \text{ kJ}$$

$$4HCl(g) + O_2(g) \stackrel{\longrightarrow}{\longrightarrow} 2H_2O(g) + 2Cl_2(g)$$

$$\Delta H = -113 \text{ kJ}$$

- (c) 5 moles of HI were heated in a sealed bulb at 717 K till the equilibrium state was reached and it was found to be 20% dissociated at that time. Calculate the equilibrium constant for the dissociation of HI reaction.
- 10. (a) For a reaction in equilibrium, derive that:

$$\frac{d \ln K_p}{dT} = \frac{\Delta H^{\circ}}{RT^2}.$$

(b) Derive the expression for Gibb's phase rule and define the terms used in the final expression. 5

(c) For the reaction:

$$N_2(g)+3H_2(g) \Longrightarrow 2NH_3(g)$$

 K_p at 673 K is 1.64×10^{-4} atm⁻². If heat of reaction is 165.21 kJ, find out the equilibrium constant at 773 K.