Your Roll No.

B.Sc. Prog. / II

AS

CS-201 : PROGRAMMING AND DATA STRUCTURE

(Admissions of 2005 and onwards)

Time: 3 hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.

Answer parts of a question together.

1. Give the outputs for the following programs:

```
(a) void main ()
{

int a=50, b=10, c;

if (!a >= 40)

b=30;

c=200;

cout<< "b="<<b<<", c="<<c;
}
```

```
(b) void main ()
       int x, y, m, n;
       m = 10;
        n = 15;
       x=++m;
       y=n++;
        cout << "x=" << x << endl;
        cout << "m=" << m << endl;
        cout << "y=" << y <<endl;
        cout << "n=" << n;
                                                     2
     }
(c) void main ()
       int arr []=\{0, 1, 2, 3, 4\};
       int *ptr;
        for (ptr=arr+4; ptr>=arr; ptr ..)
            cout < < *ptr < < endl;
                                                     2
     }
```

2. (a) Write a C++ function which accepts two strings as arguments and returns the concatenation of first character of first string and last character of second string. (example: if the two strings are Delhi and University, then the result is DY.) 3

(b) Give the outputs for the following code segments / programs: (i) int a = 10; void check () { int a=5; cout << a << endl; cout << :: a << endl; } 2 (ii) for (i=1; i<3; i++)for (j=4; j>=i; j...)cout < < "A": cout < < endl; 2 (iii)void main () { int n=1; cout << "The numbers are:"; do

{

}

n++;

cout << n << "\t":

 $\}$ while (n <= 10);

3. Give the output of the following code segments:

```
(a) class shared
        static int a; int b;
        public:
           void set (int i, int j)
            {
               a=i;
               b=i;
            void show ()
            {
               cout << "a=" <<a<< b=" <<b<<
                                                   end1;
            }
    };
    void main ()
    {
       shared x, y;
       x. set (10, 10)
       x. show ();
       y. set (20, 20);
       y. show ();
       x. show ();
    How many copies of data members 'a' and 'b' will
```

be maintained for this program?

```
(b) void chk (int test)
    try {
         if (test) throw test;
         else throw "value is zero";
     }
    catch (int i)
     {
       cout << "caught exception:"<<i<<endl;
     }
     catch (const char *str)
     {
       cout << "caught a string:";
       cout <<str<< endl;
     }
     int main ()
     {
       cout << "Start\n";
       chk (1);
       chk (2);
       chk (0);
       chk (3);
       cout << "End";
        return 0;
                                                        3
     }
```

P. T. O.

```
(c) class base
    public:
       virtual void fn ()
       {
       cout << "In Base \n";
       }
     };
    class derived1: public base
     {
    public:
       void fn ()
        {
            cout << "In dl \n";
        }
     };
     class derived2: public base
     {
     public:
       void fn ()
          cout << "In d2 \n";
       }
     };
     void main ()
     {
       base *p, b;
       d1 x;
       d2 y;
```

```
p=&b;
p→fn();
p=&x;
p→fn();
p=&y;
p→fn();
```

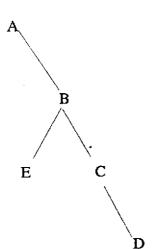
- 4. (a) Explain 'this' pointer with the help of an example.
 - (b) Can we use 'this' pointer in friend function? Give reason to support your answer.
 - (c) c=(a > b)? a:b;

 What will be the output of c when a=10 and b=20?
- 5. (a) Illustrate the use of pure virtual function with the help of an example.

```
(b) What will be output on execution of main()?
    class Base1
    { public:
           Base1 ()
           {cout << "Constructing Base1 \n"; }
           ~Base1 ()
           {cout << "Destructing Base1 \n";}
    };
    class Base2
     { public:
            Base2()
            {cout << "Constructing Base2 \n";}
            ~Base2()
            {cout << "Destructing Base2 \n"; }
     };
     class Derived: public Base1, public Base2
     { public:
            Derived()
            {cout << "Constructing Derived \n";}
            ~Derived ()
            {cout << "Destructing Derived \n";}
     };
     void main ()
     {
        Derived d;
      }
```

í

- 6. Answer all parts of this question in a single program.
 - (a) Define a class Student having two private data members internal marks and external marks. 2
 - (b) Define a parametrized constructor which accepts both the internal_marks and external_marks of the student and updates the corresponding private members.
 - (c) Overload the '+' operator as follows: if S1 and S2 are two students then S1+S2 adds external marks of S1 and S2 and returns their sum.
- 7. (a) Convert the following infix expression to postfix expression:


$$A$B * C-D+E/F/(G+H)$$

Show the stack operations. (\$ stands for exponent.)

(b) Evaluate the following postfix expression using stack (A=3, B=2, C=1, D=4):

- (c) Mention two applications/uses of stacks. 2
- 8. (a) Write a recursive program to implement Binary search.

•	(b)	Observe the following operations on a linear queue of array size 4:
		1 insert(10) 2 insert(20)
		3 delete()
		4 insert(40)
		5 delete()
	•	6 delete()
		7 delete()
		How does queue appear—
		(i) after step 4?
		(ii) after step 7?
	(c)	Give one advantage of using linked list over arrays.
9.	(a)	Write functions to perform the following on a singly linked list:
		(i) Search an element in the list.
		(ii) Delete first element of the list. 4+2
	(b)	Give the Preorder, Inorder, Postorder traversals of the following tree rooted at A: 6
		-

(c) Apply Bubble Sort on the following array of integers showing outcome after each iteration. Sort in ascending order.

11

15, 12, 14, 16, 10, 3

. What is the complexity of Bubble Sort?