This qu	estion paper contains 3 printed pages.]
	Your Roll No.
8282	JS
	B.Sc. Prog./II
	EL-202—SEMICONDUCTOR DEVICES
	AND FABRICATION
	(Admissions of 2005 and onwards)
Time : 3	3 Hours Maximum Marks : 75
	(Write your Roll No. on the top immediately on receipt of this question paper.)
	Attempt any Five questions.
	All questions carry equal marks.
1. (a)	What are intrinsic and extrinsic semiconductors?
	Why at a high temperature, both extrinsic and
	intrinsic semiconductors behave alike? 5
(p)	Give the energy band diagram of n-type and p-type
	semiconductors. 4
(c)	If a silicon sample with intrinsic concentration

 $1.5 \times 10^{10} \ \mathrm{cm^{-3}}$ is doped with $10^{17} \ \mathrm{As}$ atoms cm⁻³. What is the position of Ferm level (E_F) relative to intrinsic Fermi level (E_F)?

(d) Define drift velocity and mobility of a charge carrier.

2. (a) Discuss Kronig-Penney model for the motion of an electron in a crystal lattice. 12 P.T.O.

828	2	(2)
	(b)	What is the effective mass of an electron? 3
3. ((a)	What is depletion region? Derive an expression for
		the width of the depletion region in a PN junction.
		How does it vary with forward and reverse bias?
		12
	(b)	Draw an equilibrium energy band diagram for an
		unbiased PN junction diode. 3
	(a)	Discuss the structure, working and uses of Light
		Emitting diode. 6
	(b)	Explain why Zener breakdown voltage has a negative
		temperature coefficient, and Avalanche breakdown
		has positive temperature coefficient. 5
	(c)	Draw the energy band diagram of a bipolar transistor
		in Thermal equilibrium. 4
5. ((a)	Draw the structure of a n-channel JFET. Explain
		the terms, source, gate, drain, channel and hence
		discuss its working and drain characteristics. 10
	(b)	"A BJT is a current controlled device whereas FET
		is a voltage controlled device." Explain. 3
	(c)	When V _{gs} of a JFET changes from - 3.1 V to
		- 3.0 V. The drain current changes from 1 mA
		to 1.3 mA. What is the value of the
		transconductance? 2
6.	(a)	What are the different types of MOSFETS? Explain
		with diagram the structure and working of an
		enhancement type MOSFET. 10

(3) 8282

- (b) Draw the equilibrium energy band diagram of a metal-semiconductor junction for a p-type semiconductor and a metal whose work function is smaller than work function of semiconductor. 5
- 7. (a) Describe how integrated resistors and capacitors are fabricated.
 - (b) Compare diffusion and ion-implantation processes for doping during IC fabrication. 5
- 8. Write short notes on any two of the following:

 $7\frac{1}{2} + 7\frac{1}{2}$

- (a) Hall Effect
- (b) Tunnel Diode
- (c) Photo lithography
- (d) Moore's Law