This question paper contains 4+1 printed pages]

Your Roll No.....

5189

B.Sc. (PHYSICAL SCIENCE)/III Sem. B

Paper—MAPT-303

(Aigebra)

(Admission of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

All questions are compulsory.

Unit I

1. (a) Define a group and prove that the set

$$G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \in \mathbb{R}, \ a \neq 0 \right\}$$

is a group under matrix multiplication. Is it an infinite abelian group?

(b) Let G be a group. Prove that $Z(G) = \bigcap_{\alpha \in G} C(\alpha)$ where

Z(G) is the centre of the group G and C(a) is the centralizer of 'a' in G.

P.T.O.

- (c) Consider the element $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in SL(2, R). What is the order of A? If we view $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ as a member of $SL(2, Z_p)$ (p-prime), what is the order of A?
- 2. (a) Prove that Z_{30} is a cyclic group. Write down all the subgroups of Z_{30} indicating their orders.
 - (b) Prove that the group (Q, +) of rational numbers under addition is not cyclic.
 - (c) (i) Define an odd permutation and an even permutation and determine whether the permutation (1256743) is odd or even.
 - (ii) Let α and β belong to S_n . Prove that $\alpha^{-1}\beta^{-1}\alpha\beta$ is an even permutation.

3.	(a)	State Lagrange's Theorem for finite groups. What about
	•	the converse ?-Justify your answer by giving some
		example.
	(b)	Suppose G is a group with order $ G = pq$, where p
		and q are prime. Prove that every proper subgroup
ê.		of G is cyclic.
	(c)	Define a normal subgroup of a group G and prove that
	٠.	SL(2, R) is a normal subgroup of GL(2, R).
		Unit II
4.	(a)	Define an ideal of a ring R and prove that intersection
		of two ideals of a ring is an ideal but union is
		not so. 61/2
	(b)	Prove that every field is an integral domain. 61/4
	(c)	Define a unit and zero divisors in a ring R and give
		an example of a non-zero element of a ring which is
	•	· ·

Unit III

- 5. (a) Prove that the set $\{a_2x^2 + a_1x + a_0|a_0, a_1, a_2 \in R\}$ is a subspace of the space of all polynomials with real coefficients over R. Prove that $\{1, x, x^2\}$ is a basis for this subspace.
 - prove that every element of a vector space is uniquely expressible as a linear combination of elements of the basis.
 - (c) Define the linear span of a subset S of a vector space V(F) and prove that the linear span of S is a subspace of V(F) containing the set S. 6½
 - 6. (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator defined by T(x, y, z) = (x + 2y + z, y + z, -x + 3y + 4z). Find out the matrix of T relative to the standard ordered basis $\beta = \{e_1, e_2, e_3\}$ of \mathbb{R}^3 .

(5)

and nullity of T.

5189

61/2

(b) If $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y) = (x, x + y, y), then find the range, rank, kernel

f(x, y) = (x, x + y, y), then find the range, tank, we her

- (c) (i) Define a linear tansformation of a vector space V(F) to a vector space U(F).
 - (ii) Which of the following maps T from $R^2 \rightarrow R^2$

are linear transformations ? 61/2

- (1) $T(x_1, x_2) = (1 + x_1, x_2)$
- (II) $T(x_1, x_2) = (x_2 x_1, 0).$

5189

5

3,000