This question paper contains 4 printed pages.]

Your Roll No.

5105

B.Sc. Prog. /II

В

CH-203: PHYSICAL CHEMISTRY (Admissions of 2008 and Onwards)

Time: 2 Hours

Maximum Marks: 50

(Write your Roll No. on the top immediately on receipt of this question paper.)

Use of scientific calculators is allowed.

Attempt Four questions in all.

Question No. 1 is compulsory.

1. Explain

- (a) Effect of impurity on critical solution temp of Phenol-H₂O system.
- (b) Solutions of electrolytes do not obey Raoult's law.
- (c) Lowering of vapour pressure of a solution on addition of a non-volatile solute to it at a given temperature.

- (d) Effect of temperature on surface tension of a liquid.
- (e) Limitations of Nernst Distribution Law.
- (f) Ethanol has a higher viscosity than ether.
- (g) Advantages of conductometric titrations over volumetric titrations. $2 \times 7 = 14$
- 2. (a) Define specific, molar and equivalent conductances. Give the SI units along with the relationship between them.
 - (b) How will you determine the solubility of a sparingly soluble salt conductometrically?
 - (c) The equilibrium constant, K_p for the reaction

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$$

is 1.64×10^{-4} at 400 °C. What will be the equilibrium constant at 500 °C if the heat of reaction in this temp range is -25140 calories? (R = 1.987 cal / deg mol) 4, 4, 4

- 3. (a) Discuss the principle of steam distillation with suitable examples.
 - (b) At a pressure of 760 mm, a mixture of nitrobenzene (C₆H₅NO₂) & H₂O boils at 99 °C. The vapour pressure of water at this temp is 733 mm. Find the proportion of water in nitrobenzene in the distillate obtained from the boiling mixture.

- (c) Apply Le-Chatelier's principle to predict the effect of T & P on the following reactions.
 - (i) $CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$ $\Delta H = 180.5 \text{ kJ}$
 - (ii) $4HCl(g) + O_2(g) \rightleftharpoons 2H_2O(g) + 2Cl_2(g) \Delta H = -113.0 \text{ kJ}$ 4, 4, 4
- 4. (a) Draw the Andrews isotherm for CO₂ gas and hence derive, P_c, V_c and T_c in terms of Van der waal's constants 'a', 'b' and gas constant 'R'.
 - (b) Calculate the temperature at which N₂ molecules have the same root mean square velocity as hydrogen molecules.
 - (c) Define surface tension & give its SI units.

 Describe the lab method to determine the surface tension of an unknown liquid. 5, 3,
- 5. (a) Define:
 - (i) Triple Point
 - (ii) Eutectic Point
 - (iii) Congruent melting point &
 - (iv) Invariant system with examples
 - (b) Sketch the phase diagram of a one component system and discuss its salient features.

- (c) Derive the following relations:
 - $(i) \qquad \left(\frac{\partial \mu_i}{\partial T}\right)_{P,nj} = -\overline{S}_i \quad \& \quad$
 - (ii) $\left(\frac{\partial \mu_i}{\partial P}\right)_{T,ni} = \overline{V}_i$

4, 4, 4

- 6. Write short notes on any three.
 - (a) Liquid Junction Potential
 - (b) Quinhydrone Electrode
 - (c) Moving Boundary method
 - (d) Phase Diagram of lead-silver system
 - (e) pH titrations
 - (f) Elevation of boiling point of a solution on addition of a non-volatile solute. 4, 4, 4