5141

Your Roll No.

B.Sc. Prog. / II

В

AC-201: Basic Principles & Lab. Operations
(Admissions of 2005 & onwards)

,

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt FIVE questions in all.
All questions carry equal marks.

- (a) Explain what is meant by determinate errors and indeterminate errors giving examples for each.
 - (b) Define absolute error and relative error. Can the relative error be negative? Explain.
 - (c) Calculate the relative error in terms of percentage and in terms of parts per thousand for an iron analysis that gives a value 115 ppm Fe content when the true value, in fact, is 110 ppm.

(5+5+5)

- (a) What do you understand by the term confidence limit? Explain.
 - (b) Write a short note on a test that can be used for rejecting suspect outliners.

P.T.O.

- (c) For the numbers 116.0, 97.9, 114.2, 106.8 and 108.3, find the mean, standard deviation and 90% confidence interval for the mean. Using the Q test, decide whether the number 97.9 should be discarded. (2+7+6)
- 3. (a) Describe a burette in detail with the help of a diagram.
 - (b) What is a meniscus reader? Give the stepwise procedure for calibration of a burette.
 - (c) Give at least three rules that one must observe while weighing with any type of analytical balance. (5+1+6+3)
- 4. (a) What do you understand by the term 'weighing by difference'?
 - (b) Describe how you will weigh NaCl using this method to prepare 100mL of about 0.5M NaCl. Given that the weight of the weighing bottle is 20.35 gms.
 - (c) How many milliliters of concentrated sulphuric acid, 37.0% (g/100g) solution, density 1.88g/cm³ are required to prepare one litre of 0.500M solution? Give the steps involved in detail. (2+5+8)
- 5. (a) Give a flow diagram showing steps in quantitative analysis.

- (b) Explain with the help of an example how a constant error will become serious as the size of the quantity measured decreases.
 - (c) Can the effect of a constant error be minimized?

 Give reasons to support your answer.
 - (d) Describe a sintered glass crucible. (6+4+1+4)
- 6. (a) Calculate the p-value for each ion in a solution that is:-
 - (i) $8 \times 10^{-8} \text{ M}$ in $Zn (NO_3)_2$ and $5.6 \times 10^{-7} \text{ M}$ in $Cd(NO_3)_2$.
 - (ii) 0.0335M in NaCl and 0.0503 M in NaOH.
 - (b) What is the purpose of a) the 0% T adjustment and b) the 100% T adjustment in a colorimeter?
 - (c) Write each answer with the correct number of digits:
 - (i) 1.021 + 2.69 3.711
 - (ii) 12.3 1.63 = 10.67
 - (iii) $4.34 \times 9.2 = 39.928$
 - (d) A method of analysis yields weights for gold that are low by 0.4 mg. Calculate the percent relative error caused by this uncertainty if the weight of the gold sample is
 - (i) 700 mg
- (ii) 250 mg
- (6+2+3+4)

- (a) Define precision and accuracy. Explain with the help of a diagram.
 - (b) What is the purpose of a calibration curve?
 - (c) What is the difference between a qualitative and quantitative analysis.
 - (d) What is the formal concentration of NaCl when 32.0g are dissolved in water and diluted to 0.500L? (6+4+2+3)

Values of students' t				
	Confidence level %			
Degree of freedom	50	. 90	95	
1	1.000	6.314	12.706	
2	0.816	2.920	4.303	
3	0.765	2.353	3.182	
4	0.741	2.132	2.776	
5	0.727	2.015	2.571	

Q test table

No. of replicate measurements	Reject with 90% confidence	Reject with 95% confidence	Reject with 99% confidence
3	0.941	0.970	0.994
4	0.765	0.829 -	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7 .	. 0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568