[This question paper contains 4 printed pages.]	
. Your Roll No	
5134	B
B.Sc. Prog./II	
· EL-202-SEMICONDUCTOR DEVICES AND	J
FABRICATION	
(Admissions of 2005 and onwards)	
Time: 3 Hours Maximum Mar.	ks : 75
(Write your Roll No. on the top immediately on receipt of this questio	n paper.)
Attempt any Five questions.	
1. (a) What are drift velocity and mobility of a	charge
carrier?	2
(b) What are direct and indirect band gap semicon	ductors
Give example of each.	3
(c) What is Fermi Energy? Show that fermi	evel of
an intrinsic semiconductor lies in the mi	ddle of
conduction band and valence band. How	does its
position change for an extrinsic semiconduc	or with
doping concentration? Also discuss the e	ffect of
temperature on the position of Fermi leve	1. 10

[P. T. O.

- (a) Derive an expression for the density of electrons in conduction band.
 (b) What is Hall's effect? A sample of Si is doped with
 - What is Hall's effect? A sample of Si is doped with 10^{22} Boron atoms/m³. If the mobility of hole is 0.04 m²/Vs, find the resistivity of the sample. If the thickness of the sample is 125 μ m and current $I_x = 1.2$ mA and magnetic field $B_z = 0.1$ Tesla, find the Hall voltage.
- (a) Draw the energy band diagram of an open circuited
 P-N junction.
 - (b) Derive an expression for the depletion region width of a P-N junction.
 - (c) Explain the principle behind varactor diode. Mention some of its applications.
- (a) Write the volt-ampere equation for a P-N diode. What
 is reverse saturation current in a P-N diode? Discuss
 the effect of temperature on reverse saturation
 current.
 - (b) Differentiate between Zener and Avalanche breakdown mechanism.
 - (c) Explain the working of a PNP transistor. Draw the energy band diagram of a bipolar junction transistor in thermal equilibrium.

5.	(a)	Discuss the construction and working of a n-channel
		JFET in details. Why is it called a 'voltage-controlled
		device'?
	(b)	Explain, what is transconductance, drain resistance
		and amplification factor of a JFET?
6.	(a)	What is difference between JFET and MOSFET?
		What are enhancement and depletion type
		MOSFET? 5
	(b)	What is Schottky Effect? Explain, how potential
		barrier arises in a metal-semiconductor (n-type)
		rectifying contact? Also draw its energy band
		diagram. 10
7.	(a)	What are the advantages of IC over discrete
		components? 5
	(<i>b</i>)	Explain the process of fabricating an integrated
		Resistor. 5
	(c)	Discuss Moore's Law. 5

5134

(4)

8. Write short notes on any two:

71/2+71/2

- (i) Ion Implantation;
- (ii) Molecular Beam Epitaxy;
- (iii) Thermal Oxidation.