This question paper contains 4+1 printed pages]

Your Roll No.

5122

B.Sc. Prog./II

MA-202-MATHEMATICS-II-Algebra

& Differential Equations

(For Physical Sciences/Applied Physical Sciences)

(Admissions of 2008 and onwards)

Time: 3 Hours

Maximum Marks: 112

(Write your Roll No. on the top immediately on receipt of this question paper.) Attempt any two parts from each question.

All questions are compulsory.

UNITI

Let
$$G = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} | n \in \mathbb{Z} \right\}$$
. Show that G is a group under matrix multiplication.

71/2

Let G be the group as in (a) and $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Compute (b) A², A⁻², A³, A⁻³. Using the information provided by this computation, show that G is a cyclic group generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. 71/2

P.T.O.

- (c) Let H be a subgroup of a group G and $a, b \in G$. Show that $Ha \cap Hb = \phi$ or Ha = Hb.
- 2. (a) Let G be a group and $a, b \in G$. Let ab = ba, o(a) = 7 and o(b) = 11, Find o(ab).
 - (b) Let Z(G) denote the center of a group G and H be a subgroup of G such that $H \subseteq Z(G)$. Show that Hg = gH for all $g \in G$.
 - (c) Let $G = \{\pm 1, \pm i, \pm j, \pm k\}$, the group of quaternions. Let $H = \{\pm 1, \pm i\}$. Show that H is a normal subgroup of G and G/H is cyclic.
- 3. (a) Let $\alpha=(12)$ (34) and $\beta=\begin{pmatrix}1&2&3&4\\2&4&1&3\end{pmatrix}$. Compute $\alpha^{-1}\beta\alpha$. Also show that α and β do not commute. $7\frac{1}{2}$
 - (b) Show that a subgroup of a cyclic group is cyclic. 71/2
 - (c) Let H, K be two subgroups of a group G such that o(H) = 12 and o(K) = 35. Find the order of $H \cap K$.

UNIT II

4. (a) Solve:

(i)
$$[y^2(x+1) + y]dx + (2xy+1)dy = 0$$
,

(ii)
$$y = 2px + f(xp^2), P = \frac{dy}{dx}$$
 6,51/2

(b) Given that y = x + 1 is a solution of:

$$(x + 1)^2 \frac{d^2 y}{dx^2} - 3(x + 1) \frac{dy}{dx} + 3y = 0,$$

find a linearly independent solution by reducing the order. Write the general solution.

(c) Show that two solutions $y_1(x)$ and $y_2(x)$ of the second order homogeneous linear differential equation:

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x) y = 0$$

where a_0 , a_1 , a_2 are continuous real-valued functions of x defined on (a, b) and $a_0(x) \neq 0$ for any x in (a, b), are linearly dependent if and only if their Wronskian is identically zero.

5. (a) Solve:

$$2\frac{dx}{dt} + 4\frac{dy}{dt} + x - y = .3e^t$$

$$\frac{dx}{dt} + \frac{dy}{dt} + 2x + 2y = e^t$$

(b) Solve:

$$yz(y + z)dx + xz(x + z)dy + xy(x + y)dz = 0$$
. 11

(c) A 16-lb weight is placed upon the lower end of a coil spring suspended from the ceiling and comes to rest in its equilibrium position, thereby stretching the spring 8 in. At time t = 0 the weight is then struck so as to set it into motion with an initial velocity of 2ft./sec, directed downward. The medium offers a resistance in pounds numerically equal to $6\frac{dx}{dt}$, where $\frac{dx}{dt}$ is the instantaneous velocity in feet per second. Determine the resulting displacement of the weight as a function of time.

(

11

UNIT HI

6. (a) Find the general integral of:

$$(y + zx) p - (x + yz)q = x^2 - y^2$$
,
where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

(b) Find the complete integral of:

$$p^2q^2 + x^2y^2 = x^2q^2(x^2 + y^2),$$

where
$$p = \frac{\partial z}{\partial x}$$
, $q = \frac{\partial z}{\partial y}$.

(c) Show that the equations:

$$'xp = yq, z(xp + yq) = 2xy$$

are compatible and solve them.

11