This question paper contains 3 printed pages.]

Your Roll No.....

5110

B.Sc. Prog./II

R

PH-202 - PHYSICS - THERMAL PHYSICS AND OPTICS

(Admissions of 2008 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

Symbols have their usual meanings.

- Apply Zeroth's law of thermodynamics to thermal systems to show that at equilibrium the systems are at the same temperature.
 - (b) Show that the change in entropy of the system during Carnot's cycle is zero.
 - (c) A Carnot's engine whose low temperature reservoir is at 7 °C has an efficiency of 50%. By how many degrees should the temperature of the high temperature reservoir be increased to increase the efficiency to 70%.

 3 × 5 = 15

- 2. (a) Define Joule Kelvin's coefficient and derive its expression for a
 - (i) Perfect gas
 - (ii) Real gas
 - (b) Discuss thermodynamic potentials.

$$2+5+5+3=15$$

- 3. (a) Obtain an expression for coefficient of viscosity (η) of ideal gases on the basis of kinetic theory of gases. Hence prove that $\eta \propto \sqrt{T}$.
 - (b) Define term "Degree of freedom" and state the law of equipartition of energy of a dynamical system. Hence show that $C_P/C_V = 1 + 2/f$

Where symbols have their usual meanings.

$$9 + 6 = 15$$

- 4. (a) Discuss different modes of heat transfer.
 - (b) Using Maxwell's relations prove that

(i)
$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 P}{\partial + 2}\right)_V$$

(ii)
$$C_P - C_V = -T \left(\frac{\partial V}{\partial T} \right)_P^2 \left(\frac{\partial P}{\partial V} \right)_T$$

(iii)
$$U = f - T \left(\frac{\partial F}{\partial T} \right)_V$$

(iv) $\alpha s/\alpha P = 1/1 - r$

Where symbols have their usual meanings.

$$3 \times 5 = 15$$

- 5. (a) Define thermodynamic probability of a system. Establish the relation between thermodynamic probability and entropy. Identify the constant appearing in the relation.
 - (b) Discuss micro and macro states with examples. 9+6=15
- 6. (a) Explain diffraction of light. Distinguish between Fresnel and Fraunhoffer class of diffraction.
 - (b) What is diffraction grating? Obtain an expression for resolving power.

$$2+4+2+7=15$$

- 7. Write short notes on any two of the following:
 - (i) Half period zone
 - (ii) Mean free path
 - (iii) Gibb's paradox
 - (iv) Planck's law