[Th	is qı	estion paper con	tair	ns 4 printe	d pages.]		
Sr.	No. o	of Question Paper	:	6913		D	Your Roll No
Unique Paper Code		:	223355				
Naı	me o	f the Course	:	B.Sc. (Pr	og.)		
Naı	me o	f the Paper	:	LSPT-306	: Introdu	ction t	o Medical Diagnostics
Semester		:	III				
Tin	ne : 3	Hours					Maximum Marks: 75
Ins	truc	tions for Candid	ate	<u>es</u>			
1.	Wr	ite your Roll No.	on	the top in	nmediatel	y on re	ceipt of this question paper.
2.		swer Five questio		•	·	,	
3.	Que	estion No. 1 is co	mp	ulsory.			
1.	(a)	Define the follow	⁄inį	g:			(4)
		(i) Tubercle					
		(ii) Osteoporo	sis				
		(iii) Apoptosis					
		(iv) Azoosperm	iia				
	(b)	Differentiate bet	we	en the follo	owing:		(10)
		(i) Paper Chro	m	atography	& Thin L	ayer C	hromatography
		(ii) CT & MR	I				
		(iii) Hyperplasi	a c	& Metaplas	sia		
		(iv) Alzheimer	's a	and Parkin	son's dise	ase	
		(v) Type I & 7	Гур	e II Diabo	etes		
	(c)	Expand the follo	wir	ng:			(5)
		(i) ANOVA					
		(ii) PCV					

		(iii) TSH	
		(iv) Rf	
		(v) DLC	
	(d)	Name the instruments for the diagnosis of the following parameters:	(5)
		(i) Blood pressure	
		(ii) Counting of RBC	
		(iii) Fractured bone	
		(iv) Instant blood glucose estimation	
		(v) Abnormal heart beat	
	(e)	Indicate the normal range for the following in human beings:	(3)
		(i) Serum Cholesterol	
		(ii) Normal Sperm Count	
		(iii) Clotting time	
2.	(a)	Explain the cause, symptoms and management of malaria.	(9)
	(b)	List three National Health Programs addressing social and economic factor of diseases.	tors (3)
3.	(a)	Illustrate the principle and applications of ion-exchange chromatography Gas Chromatography.	and (9)
	(b)	List the advantages of HPLC.	(3)
4.	(a)	Write the differentiating features of Hepatitis virus with special emphasis Hepatitis B.	s or (9)
	(b)	Write a short note on Down's syndrome.	(3)
5.	Wri	te the principle and clinical significance of any three of the following:	
	(a)	WBC count	

(h)	ECD
w	EOK

(c) Haemoglobin estimation

(d) KFT (4,4,4)

6. (a) Group A, B & C of dengue patients were subjected to treatment with a new drug. Following results were obtained for recovered patients:

A	В	С
3	6	7
4	3	3
3	3	4
5,	4	6
0	4	5

Perform ANOVA to find any significant difference in treatment. (6)

(b) Calculate mean, mode and median of the given Hb. estimation results

- (c) Describe Chi-square test and discuss its application. (3)
- 7. (a) Write the details involved in Microtomy techniques. Comment on the advantages of fixation. (9)
 - (b) Add a note on culture techniques involved in Microbiology. (3)
- 8. Write short notes on any three of the following:
 - (i) Liver cirrhosis
 - (ii) ECG
 - (iii) UV-spectroscopy
 - (iv) ABO blood group (4,4,4)

Variance ratio, F, for p = 0.05

			·								
Degrees of				Deg	grees of f	reedom,	n,				
freedom,											
n ₂	i →								· · · · · · · · · · · · · · · · · · ·		
•	. 1	2	3	4	5.	6	8	12	24	∞	
1	161.4	199.5	215.7	224.6	230.0	234.0	238.9	243.9	249.0	254.3	
2	18.5	19.0	19.2	19.3	19.3	19.3	19.4	19.4	19.5	19.5	
3	10.1	9.6	9.3	9.1	9.0	8.9	8.8	8.7	8.6	·· 8.5	
4	7.7	6.9	6.6	6.4	6.3	6.2	6.0	5.9	5.8	5.6	
5	6.6	5.8	5.4	5.2	5.1	5.0	4.8	4.7	4.5	4.4	
6	6.0	5.1	4.8	4.5	4.4	4.3	4.2	4.0	3.8	3.7	
7	5.6	4.7	4.4	4.1	4.0	3.9	3.7	3.6	3.4	3.2	
8	5.3	4.5	4.1	3. 8	3.7	3.6	3.4	3.3	3.1	2.9	
9	5.1	4.3	3.9	3.6	3.5	3.4	3.2	3.1	2.9	2.7	
10	5.0	4.1	3.7	3.5	3.3	3.2	3.1	2.9	2.7	2.5	
11	4.8	4.0	3.6	3.4	3.2	3.1	3.0	2.8	2.6	2.4	
12	4.8	3.9	3.5	3.3	3.1	3:0	2.9	2.7	2.5	2.3	
13-	4.7	3.8	3.4	3.2	3.0	2.9	2.8	2.6	2.5	2.2	
14	4.6	3.7	3.3	3.1	3.0	2.9	2.7	2.5	2.4	2.1	
15	4.5	3.7	3.3	3.1	2.9	2.8	2.6	2.5	2.3	2.1	
16	4.5	3.6	3.2	3.0	2.9	2.7	2.6	2.4	2.2	2.0	
17	4.5	3.6	3.2	3.0	2.8	2.7	2.6	2.4	2.2	2.0	
18	4.4	3.6	3.2	2.9	2.8	2.7	2.5	2.3	2.2	1.9	
. 19	4.4	3.5	3.1	2.9	2.7	2.6	2.5	2.3	2.1	1.9	
20	4.34	3.5	3.1	2.9	2.7	2.6	2.5	. 2.3	2.1	1.8	
	4.3	3,5	3.1	2.8	2.7	2.6	2.4	2.3	2.1	1.8	
21. 22	4.3	3.4	3.1	2.8	2.7	2.6	2.4	2.2	2.0	1.8	
23	4.3	3.4	3.0	2.8	2.6	2.5	2.4	2.2	2.0	1.8	
24	4.3	3.4	3.0	2.8	2,6	2.5	2.4	2.2	2.0	1.7	
25	4.2	3.4	. 3.0	2.8	2.6	2.5	2.3	2.2	2.0	1.7	
26	4.2	3.4	3.0	2.7	2.6	2.5	2.3	2.2	2.0	1.7	
	4.2	3.4	3.0	2.7	2.6	2.5	2.3	2.1	1.9	1.7	
27 28	4.2 4.2	3.3	3.0	2.7	2.6	2.4	2.3	2.1	1.9	1.7	
29	4.2	3.3	2.9	2.7	2.5	2.4	2.3	2.1	1.9	1.6	
30	4.2	3.3	2.9	2.7	2.5	2.4	2.3	2.1	1.9	1.6	
40	4.1	3.2	2.8	2.6	2.5	2.3	2.2	2.0	1.8	1.5	
60	4.0	3.2	2.8	2.5	2.4	2.3	2.1	1.9	1.7	1.4	
120	3.9	3.1	2.7	2.5	2.3	2.2	2.0	1.8	1.6	1.3	
00	3.8	3.0	2.6	2.4	2.2	2.1	1.9	1.8	1.5	1.0	
~		1 3.0	1	1.7	1	1 2.1	L	<u> </u>	1.5	1	