[This	question paper contains 4 printed pages.]					
1931	Your Roll No					
	B.Sc. (Prog.) / II	E				
	COMPUTER SCIENCE					
1	Paper - CS-202 - Computer System Architecture					
	(Admissions of 2005 and onwards)					
Time:	3 Hours Maximum Marks	: 75				
	(Write your Roll No. on the top immediately on receipt of this question paper.)					
	Question 1 is compulsory. Attempt any five questions from Question Nos. 2 to 8.					
1. (a)	Verify using Boolean algebra:					
	(X + Y)(X + Z) = X + YZ	(3)				
(b)	Explain the working of a RS flip-flop.	(3)				
(c)	What is a Hit ratio?	(3)				
(d)	Explain LDA memory-reference instruction.	(3)				

(e) Give the truth table of the following expression F = xy'z + x'y'z + xyz (3)

P.T.O.

(f) Using ten's complement, perform the following:

$$(-625)_{10} + (731)_{10}$$
 (3)

- (g) Differentiate between direct and indirect addressing modes. (3)
- (h) Represent the number 1101.1101 in normalized floating point representation with 16 bits. The normalized fraction mantissa has 9 bits and the exponent has 7 bits. (2)
- (i) Represent $(321)_{10}$ in BCD form. (2)
- (a) Simplify the Boolean function F using K-map in sum-of-products form and draw the logic diagram of simplified F.

$$F(a, b, c, d) = \sum (0, 1, 2, 4, 5, 6, 8, 12)$$
 (5)

- (b) Draw the flowchart for the interrupt cycle of the basic computer. (5)
- (a) Briefly explain the working of an I/O interface unit with its block diagram.
 (6)
 - (b) The content of a 4 bit register is initially 1101. The register is shifted 4 times to the right with the serial input being 10110. Show the contents of register after each shift. (4)

4.	Give the	function	table	and th	e logic	circuit	οf
----	----------	----------	-------	--------	---------	---------	----

- (a) 4-to-l multiplexer. (5)
- (b) 4-bit full adder circuit. (5)
- (a) What is an Interrupt? Briefly explain the three different types of interrupts giving example of each.
 - (b) The following memory units are specified by the number of words times the number of bits per word. Specify the number of address and data lines:
 - (i) $32M \times 16$

(ii)
$$2G \times 32$$
 (4)

- 6. (a) Briefly explain 'Virtual Memory' and 'Primary Memory'. How many 128 × 8 RAM chips are needed to provide a memory capacity of 2048 bytes? (6)
 - (b) Write any four characteristics of each RISC and CISC architecture based processors. (4)
- Convert the following numbers to the indicated base:
 - (a) $(1101011)_2$ to $(...)_8$

1931

4

(b) $(1101011)_2$ to $(...)_{10}$

- (c) $(635)_8$ to $(...)_{16}$
- (d) $(A9)_{16}$ to $(...)_2$

(c)
$$(182)_{10}$$
 to $(...)_2$ (10)

- 8. Write short notes on the following (any four):
 - (a) Indexed addressing mode-
 - (b) Edge-triggered flip-flops
 - (c) Zero-address instructions
 - (d) Interrupt initiated I/O
 - (c) Selective set and selective compliment logic microoperations (2.5×4)