1963

Your Roll No.

B.Sc. (Prog.) / II

E

MP-202: Thermal Physics and Electromagnetism

(Admissions of 2005 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

All questions carry equal marks.

- (a) Explain the terms adiabatic and isothermal changes. (2,2)
 - (b) State the first law of thermodynamics and discuss its physical significance. (5)
 - (c) Derive for a perfect gas the expression connecting pressure and volume during an adiabatic process. (6)

- (a) Give Kelvin-Planck and Clausius statements of second law of thermodynamics and explain its physical significance.
 - (b) Prove that all reversible engines working between the same two temperatures have the same efficiency. (5)
 - (c) What is mean free path? Calculate the mean free path of a gas molecule whose diameter is 3 A⁰ and number of molecules per c.c. is 3×10¹⁹. (1,3)
- 3. (a) Define the following terms:
 - (i) microstate
 - (ii) macrostate
 - (iii) phase space
 - (iv) thermodynamic probability (8)
 - (b) What is entropy? Establish Boltzmann relation connecting entropy and probability. (3,4)
- 4. What is electron gas? Derive distribution law of Fermi-Dirac statistics. What is meant by Fermi energy? (2,11,2)

 (a) Define electric potential. Find the expression for electric field intensity in a region where potential is given by

$$V = -A xy (2,3)$$

- (b) State Gauss's law in electrostatics. Explain it in differential form. (2,2)
- (c) Prove that electric field near the surface of a conductor is σ/ε₀ where σ is the surface charge density.
- 6. (a) State and explain Biot-Savart's law. (3)
 - (b) Using Biot-Savart's law show that
 - (i) $\nabla .B = 0$. Explain its significance.
 - (ii) $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}$

where symbols have their usual meaning. (6,6)

- 7. (a) Write Maxwell's equations for electromagnetic waves in free space. Derive the wave equation satisfied by electric and magnetic fields. (8)
 - (b) Write the plane wave solution of the wave equation and show that the electromagnetic waves are transverse in nature. (7)

- 8. Write short notes on any two of the following:
 - (a) Thermodynamic potentials
 - (b) Maxwell's distribution law of molecular velocities
 - (c) Faraday's laws of electromagnetic induction
 - (d) Poynting theorem (2×7.5)