Sl. No. of Ques. Paper : 1902

GC-3

Unique Paper Code

: 42514305

Name of Paper

: Communication Electronics

Name of Course

: B.Sc. Physical Science (CBCS)

Semester

: III

Duration

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions. All questions carry equal marks. Assume data wherever necessary.

1.	(a)	A single tone modulating signal cos $(15\pi \ 10^3 t)$ frequency modulates a carrier of	10 MHz
		and produces a frequency deviation of 75 kHz. Find (i) the modulation index, (ii) phase d	eviation.
		(iii) If another modulating signal produces a modulation index of 100 while maintaining	the same
		deviation, find frequency and amplitude of the modulating signal, assuming $K_f = 15$ volt.	kHz per
	(b)	What is analog and digital signal? Give two examples of each.	7
	(c)	Make a block diagram of analog communication system.	4
2.	(a)	Describe balanced modulator.	9
	(b)	Explain the functioning of slope detector.	. 6
3.	(a)	Derive the expression of a single tone AM wave. Draw baseband signal, carrier signal	l,
		modulated wave and frequency spectrum. Define modulation index.	9
	(b)	Find the ratio of useful power to total power in AM wave.	6
4.	(a)	What are the advantages and disadvantages of geostationary satellite? Draw the satellite system	
	<i>a</i> .	downlink block diagram.	4,5
	(b)	Make a comparison between PAM, PPM and PWM.	6
5,.	(a)	Explain Time Division Multiplexing system.	7
	(b)	Describe Super-heterodyne receiver using a block diagram and explain the function of each	of each
		block. How is it superior to TRF?	. 8
6.	(a)	State Sampling theorem. Make all necessary spectrums to explain Nyquist criteria.	8
	(b)	How can PAM be generated and detected?	7
7.	(a)	Describe Frequency reuse. Why is it useful in cellular telephone system?	5
	(b)	Explain one method of generation of FM wave.	10

b

- 8. Attempt any three:
 - (a) PCM and Quantization
 - (b) ASK and FSK
 - (c) SIM and IMEI Number
 - (d) Types of Noises and Significance of S/N ratio
 - (e) CDMA and FDMA

5×3