| This q | uestion paper con | tains 4 printed page | s] | | |---|---------------------|---|---|---------------| | | | | Roll No. | | | S. No. | of Question Paper | : 97 | | | | Unique Paper Code | | : 217586 | G | | | Name of the Paper | | : CHCT-501 : Ch | emistry—I | | | Name of the Course | | : B.Sc. (Prog.) Phy | ysical Sciences, Part III (Concurrent Course) | | | Semest | ter | : V | | | | Duratio | on: 3 Hours | | Maximum Mar | ks: 75 | | | (Write your Ro | oll No. on the top imn | nediately on receipt of this question paper.) | | | | | Question No | o. 1 is compulsory. | | | |] | Both Section A and | Section B are compulsory. | | | | Attempt three of | questions from Secti | on A and three questions from Section B. | | | 1. A | attempt any five pa | arts from the follow | ing: | | | (a) Write down the Schrodinger wave equation of Hydrogen atom. Describe the involved. | | | | | | (b | What do you | understand by Aufb | oau's principle. State the (n+1) rule. | 3 | | (0 | Explain why | melting point of Na(| Cl is higher than that of AlCl ₃ . | 3 | | (4 | d) State the seco | nd law of thermodyr | namics and justify the statement qualitatively. | 3 | | (e | e) Explain why | C _P is always greater | than C _V . | 3 | | (f. |) What is Com | mon Ion Effect? Ex | plain with the help of an example. | 3 | | | • | Se | ection A | | | | | Attempt an | y three questions. | | | 2. (a | | n-Haber Cycle for the mused in the cycle. | | each 5 P.T.O. | | • | | | | | | 7 |) | 97 | |---|---|-----| | | | 9 / | | | (0) | Calculate the lattice energy of NaCi crystal from the following data by the use of | | | |------------|--------------|---|---------|--| | ' | | Born-Haber Cycle. Sublimation energy = 108.7 kJ/mol, Dissociation Energy for | or | | | | | Cl ₂ = 225.9 kJ/mol, Ionization Energy for Na(g) = 489.5 kJ/mol, Electron affinity for | or | | | | | Cl(g) = -351.4 kJ/mol, Heat of formation of NaCl = $-414.2 kJ/mol$. | 3 | | | | (c) | What is the physical significance of the Madelung's constant in the Born-Land equation? | de
2 | | | 3. | Give | e reasons for any <i>four</i> of the following: $4 \times 2.5 = 1$ | 0 | | | | (a) | BaSO ₄ is insoluble in water | | | | | (<i>b</i>) | Noble gases do not form ionic halides | | | | | (c) | LiCl has a higher boiling point than HCl | | | | | (d) | AgF, AgCl and AgBr have similar structures but the order of hardness differs. | | | | | (e) | Silver halides have lattice energies similar to alkali halides but still insoluble in water | r. | | | 1 . | (a) | Give the quantum mechanical expression and the physical significance of normalization |)ii | | | | | principle. | 3 | | | | (<i>b</i>) | Explain the importance of the radial probability distribution curves and plot the same for | or | | | | | 1s, 2s and 2p orbitals of H atom. | 5 | | | | (c) | Why are 2d and 3f orbitals not possible? | 2 | | | 5. | (a) | Predict the shape and the type of hybridization in each of the following molecules: | 5 | | | | | BeF ₂ , H ₂ O, SF ₆ , ClF ₃ , XeF ₄ . | | | | | (b) | Draw the MO diagram for CO molecule and calculate its bond order. | 3 | | | | (c) | State the limitations of the Valence Bond Theory. | 2 | | 3) 97 ## Section B Attempt any three questions. 6. (a) Calculate q, w, ΔU and ΔH for an isothermal reversible and isothermal irreversible expansion of an ideal gas. (b) Calculate the heat of formation of KCl from the following data: (i) $$KOH(aq) + HCl(aq) \rightarrow KCl(aq) + H2O(l)$$ $\Delta H = -57.3 \text{ kJ/mol}$ (ii) $$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(1)$$ $\Delta H = -286.2 \text{ kJ/mol}$ (iii) $$\frac{1}{2}$$ H₂(g) + $\frac{1}{2}$ Cl₂ \rightarrow HCl(aq) Δ H = -164.4 kJ/mol (iv) $$K(s) + \frac{1}{2} O_2(g) + \frac{1}{2} H_2(g) + aq \rightarrow KOH(aq)$$ $\Delta H = -487.4 \text{ kJ/mol}$ (v) $$KCl(s) + aq \rightarrow KCl(aq)$$ $\Delta H = +18.4 \text{ kJ/mol}$ 7. (a) Derive the following relation for a salt of strong acid and weak base: 6 $$pH = \frac{1}{2} [pKa + pKw - pK_h]$$ (b) Calculate the solubility in grams per litre of Al(OH)₃ in water at 25°C if the value of $K_{sp} = 8.5 \times 10^{-32}$. 8. (a) Derive the following Thermodynamic expression: $$\Delta G = \Delta H + T \left[\frac{\partial \Delta G}{\partial T} \right] P$$ and give the name of this equation. 5 P.T.O. 3 - (b) Calculate the entropy change for the fusion of 1 mole of a solid which melts at 300K. The latent heat of fusion is 2.51 kJ/mol. $\left(\frac{\partial P}{\partial S}\right)_{V} = \left(\frac{\partial T}{\partial V}\right)_{S}.$ 9. Write short notes on any four: Show that: (c) 4×2.5=10 - (i) Carnot cycle for an ideal gas - (ii) Ostwald's dilution law - (iii) Arrhenius Theory of Electrolytic Dissociation - (iv) Buffer Action of Acidic Buffer (qualitative explanation) - (v) Henderson-Hasselbalch equation for Basic Buffer.