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UNIT -1

1. {(a) Define Group. Give exal;lples of each of following :
(i) Finite abelian group.
(i1) Finite non-abelian group.
(i11) Infinite abelian group.
(iv) Infinite non-abelian group.
(v) Cyclic group.

(vi) Abelian group which is not cyclic. {6)
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Let G be a group. Show that Z(G) = (| C(a). Where Z(G) is the center
aeG

of the group G and C(a) is the centralizer of a in G. (6)
. : 2 6|, '
Find the inverse of the element [3 5] in GL(2,Z,)- - (6)

Let H be a nonempty finite subset of a group G. Then show that if is a
subgroup of G if H is closed under the operation of G. (6)

Define cyclic group. Give an example of a noncyclic group, all of whose
proper subgroups are cyclic. (6)
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Compute each of the following :

(a) o
(b) Pa
(c) af (6)
State and prove Lagrange’s theorem for finite group. (6)
Find all left cosets of {1,11} in U(30). {6)

Show that the order of a permutation on a finite set written in
disjoint cycle form is the least common multiple of the lengths of the
cycles. (6)
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6. (a)
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UNIT - II

Prove that a nonempty subset S of a ring R is a subring of R if and only
if

(i) a—-be S and (ii) abe S for all a,b € S.

Hence show that if a is a fixed element of a ring R then

I ={xeR:ax =0} is a subring of R. (6'%)

Let R be a commutative ring. Then show that R is an integral domain

if and only if ab = ac = b = ¢, where a,b,c € R and a # 0. 6'2)

Define an ideal of a ring R and prove that intersection of two ideals of

a ring is an ideal but union is not so. (6'%)
UNIT - 111

Prove that a nonempty subset W of a vector space V(F) is a subspace of
V if and 6n1y if aw, + fw, e W Va, BeF and w,w,eW.

Give an example of a nonempty subset W of a vector space V(F) which

is not a subspace of V. (6%)
Show that the vectors (1,2,3,4),(0,1,-1,2),(1,5,1,8),(3,7,8,14) in R* are
linearly dependent over R. 6'%)

Determine whether or not the vectors (1,-3,2), (2,4,1) and (1,1,1) form
a basis of R%. (6%4)

Define a basis of a vector space over a field F and prove that every
element of a vector space is uniquely expressible as a linear combination
f elements of the basis. (6'%)
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(b) (i) Show that the mapping T : R? » R? defined by
T(x;x,) = (x, + x,, X, — X,, X,) is a linear transformation.
(i) Let T: V — W be a linear transformation. Prove that the vectors

Vy» V,, V, € V are linearly independent, if T(v)), T(vz), T(v,) are linearly
independent. SR (6'%)

(c) LetT:V — U be a linear transformation. Define null space N(T) and range

space R(T) of T. Show that N(T) is a subspace of V and. R(T) is a subspace
of U. (672)

(2700)



	001
	002
	003
	004

