[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1846 GC-3 Your Roll No......

Unique Paper Code : 42354302

Name of the Paper : Paper III - Algebra

Name of the Course : B.Sc. Physical Sciences / Mathematical Sciences

(Part - II)

Semester : III (Under CBCS)

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on the receipt of this question paper.

- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.
- 4. Marks are indicated.

UNIT - I

- 1. (a) Define Group. Give examples of each of following:
 - (i) Finite abelian group.
 - (ii) Finite non-abelian group.
 - (iii) Infinite abelian group.
 - (iv) Infinite non-abelian group.
 - (v) Cyclic group.
 - (vi) Abelian group which is not cyclic. (6)

- (b) Let G be a group. Show that $Z(G) = \bigcap_{a \in G} C(a)$. Where Z(G) is the center of the group G and C(a) is the centralizer of a in G. (6)
- (c) Find the inverse of the element $\begin{bmatrix} 2 & 6 \\ 3 & 5 \end{bmatrix}$ in $GL(2, Z_{11})$. (6)
- 2. (a) Let H be a nonempty finite subset of a group G. Then show that if is a subgroup of G if H is closed under the operation of G. (6)
 - (b) Define cyclic group. Give an example of a noncyclic group, all of whose proper subgroups are cyclic. (6)

(c) Let
$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix}$$
 and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}$

Compute each of the following:

- (a) α^{-1}
- (b) βα

(c)
$$\alpha\beta$$

- 3. (a) State and prove Lagrange's theorem for finite group. (6)
 - (b) Find all left cosets of {1,11} in U(30). (6)
 - (c) Show that the order of a permutation on a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.

 (6)

UNIT - II

- 4. (a) Prove that a nonempty subset S of a ring R is a subring of R if and only if
 - (i) $a-b \in S$ and (ii) $ab \in S$ for all $a,b \in S$.

Hence show that if a is a fixed element of a ring R then $I = \{x \in R : ax = 0\}$ is a subring of R. (6½)

- (b) Let R be a commutative ring. Then show that R is an integral domain if and only if $ab = ac \Rightarrow b = c$, where $a,b,c \in R$ and $a \neq 0$. (6½)
- (c) Define an ideal of a ring R and prove that intersection of two ideals of a ring is an ideal but union is not so. (6½)

UNIT - III

- 5. (a) Prove that a nonempty subset W of a vector space V(F) is a subspace of V if and only if $\alpha w_1 + \beta w_2 \in W$ $\forall \alpha, \beta \in F$ and $w_1, w_2 \in W$.
 - Give an example of a nonempty subset W of a vector space V(F) which is not a subspace of V. (6½)
 - (b) Show that the vectors (1,2,3,4),(0,1,-1,2),(1,5,1,8),(3,7,8,14) in \mathbb{R}^4 are linearly dependent over \mathbb{R} .
 - (c) Determine whether or not the vectors (1,-3,2), (2,4,1) and (1,1,1) form a basis of \mathbb{R}^3 . $(6\frac{1}{2})$
- 6. (a) Define a basis of a vector space over a field F and prove that every element of a vector space is uniquely expressible as a linear combination f elements of the basis.

 (6½)

- (b) (i) Show that the mapping $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1 x_2, x_2) \text{ is a linear transformation.}$
 - (ii) Let $T: V \to W$ be a linear transformation. Prove that the vectors $v_1, v_2, v_3 \in V$ are linearly independent, if $T(v_1), T(v_2), T(v_3)$ are linearly independent. (6½)
- (c) Let T: V → U be a linear transformation. Define null space N(T) and range space R(T) of T. Show that N(T) is a subspace of V and R(T) is a subspace of U.