This question	n paper contains 7 printed pages]	
	Your Roll No	
5123		
	B.Sc. Prog./III B	
	MA301—MATHEMATICS	
1	(Real Analysis)	
	(For Physical Sciences/Applied Sciences)	
	(Admissions of 2008 and onwards)	
Time:: 3 Ho	urs Maximum Marks: 112	2
(Write your R	oll No. on the top immediately on receipt of this question paper.)	
	All questions are compulsory.	
Attempt any two parts from each question.		
1. (a)	Define an uncountable set. Show that every subset of a	ı

countable set is countable.

P.T.O.

2+4=6

- (b) Define supremum and infimum of a set. Find supremum of the set $S = \{r \in Q | r < a, a \in \mathbb{R}\}$.
- (c) State and prove Archimedean property of real numbers.

 Show that the infimum of the set: 3+3=6

$$S = \left\{ \frac{1}{n+1} \middle| n \in \mathbb{N} \right\} \text{ is } \cdot_0,$$

- (a) Prove that a point (p is a limit point) of a set A if and only if every neighbourhood of p contains infinitely many points of A.
 - (b) Prove that every convergent sequence is bounded.

 Justify by giving an example that the converse is not true.

 4+2=6
 - (c) State Bolzano Weierstrass Theorem. Justify that no condition in the theorem can be dropped. 2+4=6

- 3. (a) If $\langle a_n \rangle$ be a sequence such that, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l$, where |l| < 1, then prove that $\lim_{n \to \infty} a_n = 0$.
 - (b) Show that the sequence $\langle a_n \rangle$ defined by :

$$a_n = 1 + \frac{1}{4} + \frac{1}{7} + \dots + \frac{1}{3n-2}$$

is not convergent.

6

(c) Show that the sequence $\langle s_n \rangle$ defined by the formula :

$$S_{n+1} = \sqrt{3S_n}$$
, $S_1 = 1$ converges to 3.

4. (a) Let Σu_n and Σv_n be two positive term series such that:

$$\lim_{n\to\infty} \frac{u_n}{v_n} = l \quad (l \text{ is finite and non-zero})$$

then, prove that Σu_n and Σv_n converge or diverge together.

(b) Test for the convergence the series: 3+3+2-8

$$(i) \qquad \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

(ii)
$$\sum_{n=1}^{\infty} \sin \frac{1}{n^2}$$

(iii)
$$\sum_{n=1}^{\infty} \frac{5^n + 5}{3^n + 2}.$$

(c) Define absolute and conditional convergence of a series.

Investigate the convergence of the series: 3+5=8

$$\frac{\sin\sqrt{1}}{1} - \frac{\sin\sqrt{2}}{2^{3/2}} + \frac{\sin\sqrt{3}}{3^{3/2}} + \dots$$

5. (a) Show that the sequence $\langle f_n \rangle$: where :

$$f_n(x) = \frac{nx}{1 + n^2 x^2}, x \in \mathbb{R}$$

is any interval containing zero.

4+4=8

(

5123

$$\sum_{n=1}^{\infty} \frac{x}{(nx+1) \{(n-1)x+1\}}$$

is uniformly convergent on any interval [a, b], 0 < a < b, but only pointwise on [0, b].

(c) Let $\langle f_n \rangle$ be a sequence of function, such that

$$\lim_{n\to\infty}f_n(x)=f(x),\ x\in[a,b]$$

and let
$$M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)|$$
.

Show that $f_n \longrightarrow f$ uniformly on [a, b] if and only if

$$M_n \to 0 \text{ as } n \to \infty.$$

8

6. (a) Show that:

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 < x \le 1$$

ant deduce that :

$$\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

6+2=8

(b) Find the interval of convergence of the series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n.$$

- (c) Determine the expansion of cosx in terms of power scries.
- 7. (a) Show that the function f defined by :

$$f(x, y) = \frac{x^2y}{x^4 + y^2}$$
 if $(x, y) \neq (0, 0)$

and f(0, 0) = 0 is not continuous at origin.

(b) Discuss the following function for continuity and differentiability at origin: 3+4=7

$$f(x, y) = \frac{xy^2}{x^2 + y^2}$$

where $(x, y) \neq (0, 0)$ and f(0, 0) = 0.

(c) State Schwarz's theorem. Show that the function:

$$f(x, y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}, \text{ if } (x, y) \neq (0, 0)$$

$$f(0, 0) = 0$$

does not satisfy the condition of Schwarz's theorem and

$$f_{yv}(0,0) \neq f_{yw}(0,0).$$
 2+3+2=7

8. (a) Let f be a function defined by:

$$f(x, y) = \frac{x^3 + y^3}{x - y} \quad \text{if } x \neq y$$

$$f(x,y)=0 if x=y$$

show that f possesses a directional derivative in every direction at (0, 0) but is not continuous at (0, 0). 4+3=7

(b) Show that for $0 < \theta < 1$.

$$\sin x$$
. $\sin y = xy - \frac{1}{6} [(x^3 + 3xy^2)]$

$$[\cos\theta x, \sin\theta y + (y^3 + 3x^2y)\sin\theta x, \cos\theta y]$$
 7

(c) Show that the function:

$$f(x, y) = 2x^4 - 3x^2y + y^2$$

has neither maximum nor minimum at (0, 0).

7