[This	ques	stion paper contains 4 printed pages.]			
		Your Roll No			
5160)	В	;		
B.Sc. Prog./III					
MP-302 : Optics, Electronics and Modern Physics					
		(Admissions of 2005 and onwards)			
Time	: 3	Hours Maximum Marks : 75	i		
(Write your Roll No. on the top immediately on receipt of this question paper.)					
		Attempt any Five questions.			
		All questions carry equal marks.			
1.	(a)	Explain the formation of spectral lines in a plane			
		diffraction grating for normal incident of light. 9			
	(b)	Discuss how plane diffraction grating is used to			
		determine the wavelength of light?			
2.	(a)	Explain the working principle of LASER. 3			
	(b)	In a laser if the medium is in thermal equilibrium;			
		the population of higher energy level can not exceed			
		the population of lower energy level. Explain. 5			
	(c)	Discuss the construction and working of He-Ne			
		LASER. 7			

5160 (2)

5100		(-)
3.	(a)	Explain critical angle of propagation and numerical
		aperture in an optical fibre.
	(b)	In a step Index fibre core index (n_1) 1.45 and of
		cladding (n_2) 1.41. Find:
		(i) Numerical Aperture
		(ii) Fractional refractive index change
		(iii) Full acceptance angle. 9
4.	(a)	Discuss the construction and working of Field Effect
		Transistor (FET).
	(b)	Discuss UJT relaxation oscillator with the help of
		circuit diagram. 5
	(c)	Explain the need of modulation in radio
		communication. 3
5.	(a)	What are the main conditions to be satisfied by an
		acceptable wave function? 3
	(b)	The wave function of a particle confined in a box
		of length L is
		$\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{\pi x}{L}$

(3) 5160

in the region 0 < x < L and zero elsewhere. Calculate the probability of finding the particle in the region 0 < x < L

$$0 < x < \frac{L}{2}.$$

- (c) Derive the Schroedinger time independent and time dependent wave equations for a non-relativistic material particle.
- 6. (a) Define the critical frequency of an ionosphere layer.

 Show that critical frequency f_c is related to the peak electron concentration N_p of the reflecting layer by

$$f_c = 9 \sqrt{N_p}$$
 (SI units). 4+6=10

- (b) Discuss the skip distance. 5
- 7. (a) Discuss n- and p-type extrinsic semiconductors. 5
 - (b) What do you understand by penetration depth in super conductors? How it varies with temperature?Explain.
 - (c) Discuss in brief Hall Effect. 5

5160 (4)

- (a) Distinguish between nuclear fission and nuclear fusion.
 Explain the principle on which atomic reactor is constructed. Mention some of its uses. 3+5+2=10
 - (b) Calculate the minimum energy in MeV, necessary to disintegrate a deutron into a proton and neutron.

(Given: mass of proton = 1.008142 amu, mass of neutron = 1.008962 amu, mass of deutron = 2.014735 amu, 1 amu = 1.6×10^{-27} kg) 5