This question paper contains 6 printed pages.	This q	question	paper	contains 6	printed	pages.
---	--------	----------	-------	------------	---------	--------

5131

Your Roll No.

B.Sc. (Prog.) / III

R

OR-301 – OPERATIONAL RESEARCH Reliability and Statistical Quality Control (Admissions of 2005 and onwards)

Time: 3 Hours Maximum Marks: 112

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all. Selecting at least two questions from each section. Question No. 4 in section - A and Question No. 8 in Section B are compulsory.

SECTION - A

- 1. (a) Define
 - (i) failure time density
 - (ii) reliability function
 - (iii) hazard function

show that knowing any one of these is enough to find all the others.

(b) Find the reliability of the following systems:

6

- (c) Find MTBF when the failure time density function is exponential and Gamma.
- 2. (a) Show that reliability of the series system of order n with hazard rate of its component 10 λ_i (i = 1, 2, ..., n) is $R(+) = e^{-\sum_{i=1}^{n} \lambda_i} t$
 - (b) Describe a series-parallel system of order (m, n).
 Obtain its reliability function and MTBF when all its components are independent each with constant failure rate λ.

3. (a) Consider 1 out of 2 system in which both components are operable. At any instant of time the system must be in either one of the following mutually exclusive states:

State 0: both components are operating.

State 1: one component has failed and the other is operating.

State 2: both components have failed, with p; (t) being the probability that at time t the system is in state i, i = 0, 1, 2. When a component fails it is put back into operation. The system fails when both its components fail. Assume that each component has constant failure rate λ and constant repair rate μ .

Obtain system reliability and system MTBF. Compare the latter with system MTBF without repair and interpret the result obtained.

- (b) Explain the difference between reliability maintainability and availability. 7
- 4. Write short notes on any three of the following:
 - (i) Stand-by system
 - (ii) Parallel series system
 - (iii) Preventive Maintenance
 - (iv) System Availability Measures

23

SECTION - B

- 5. (a) What is control chart? Explain the justification for using 3 sigma limits in the control charts.
 - (b) A machine is manufacturing mica discs with specified thickness between 0.008" and 0.015". Samples of size 4 are drawn every hour and their thickness in units (1 unit = 0.001") are recorded as follows:

Sample No.	Thickness of mica discs (1 unit = 0.001")			
-1 ,	14	8	12	12
2	11	10	13	8
3	11	12	16	13
4	15	12	14	11
5	10	10	8	8

For the above data, set up on R-chart and on \overline{X} - chart. Plot the observed points and comment on the same.

6. (a) The following data gives the number of defectives in 10 independent samples of varying size from a production process.

Sample No.	Sample Size	No. of Defectives	
1	2,000	425	
2	. 1,500	430	
3	1400	. 216	
4	1350	341	
5	1250	225	
6	1760	322	
7	18751	280	
8	1955	306	
9	3125	337	
10 1575		305	

Draw the control chart for fraction defective and comment on it.

(b) Draw a suitable control chart for the following data pertaining to the number of coloured threads (considered as defects) in 15 pieces of cloth in a certain make of synthetic fiber and state your conclusions:

7. (a) Describe a single sampling plan for attributes with lot size N, sample size n and allowable defectivesC. For this sampling plan, obtain the probability of

acceptance of the lot if the lot function defective is p. Modify the expression obtained using: 12

- (i) Binomial approximation
- (ii) Poisson approximation
- (b) Assuming that the number of defective items follows Poisson law, determine the most economical single sampling plan given lot size (N), AOQL and process average quality (p).

10

- 8. Write short notes on any three of the following:
 - (i) Natural Tolerance Limits and Specification Limits
 - (ii) u chart
 - (iii) Process Capability Measures
 - (iv) ASN and ATI of single sampling plan for attributes. 23