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All the questions are compulsory.
Attempt any two parts from each question.

1. (a) Define an upﬁer bound and supermum of a
bounded set of real numbers. Show that for a
non-empty set S, an upper bound M is the
supermum if for each € >0, if a real number
x € S such that §\>M-e. ' '

(b) Define limit point of a set. Give an example of
each of the following sets.

(i) A set which has no limit point.
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(ii) A set which has infinite number of limit points
lying inside the set.

(iii) A set which has infinite number of limit points
lying outside the set.

(c) Define order axioms and completeness axioms in
R. Give an example of a field

(i) which is complete.
(ii) which is not complete. -
Justify your answer.

2., (a) Prove that everlr convergent sequence is bounded.
Is the converse true ? When is a bounded

sequence convergent ?

(b) State and prove a sufficient condition for
convergence of a monotonic increasing sequence.

(c) Let <S > be a sequence such that

.., =2-—, n21
S

n

w
]
SRRV

Show that <8 > is convergent to 1.
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3.

4.

(a) Show that the sequence <r*> where =1 <r<1 is
convergent.

(b) State and prove necessary condition for
convergence of a series Z" u, - Is the condition
n=

sufficient. Justify by giving example.

(c) State Leibnitz test for alternating series. Show

1

1 1
that F - 5; + ? ........... converges for p>0.

(a) State and prove Couchy’s Root Test for positive
term series.

(b) Test for convergence the series

. @ I'Iz-'l a
(1) Zm n2+]x , x>0

. = sinnx
(i) Z“_l 7 ,xeR

(¢) Test for convergence the series
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i) Y. (Jﬁ‘ +1-n*-1)

I l 1
(i) 1+ +4 S

33

1
5. (a) Show that the sequence <f,(x)> where f (x)= Tt

is uniformly convergent in any interval [0,b], b > 0.

(b) Show that the series

4 4 4
. X x". X

T ) ey

...........

is not uniformly convergent on [0,1].

-

(c) Show that <f (x)> where f (x) = nxe-m? converges

) 1 )
pointwise on [0,1] and llm‘,__,jo(x)d, :Iofdx
where f(x) is pointwise ' " of < (x)>.

What do you conclude from this inequality ?

6. (a) Find the radius of convergence of the series

x? 21 31
2y g

..........
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(b) Show that log(1 - X)=-X -—1(2_; —— ey, — 1S x <

+ = e

and deduce that log2=1-

(¢) Find power series expansion of sin x.

]
+xsin—, y=#0
7. (a) Let f(x,y)= d y' 7

0 , y=0

Show that logu_”_,mmf('x,y) and lim__, lim _,f(x,y)

exists but lim o lim _,f(x,y) doesnot exists.

] 1
xsin—+ysin—, xy#0
X y
' xsin-l- xz0
(b) Let f(x,y)=35 x’
yﬁnl, yz0
y

0, x=0=y_

Show that f is not differentiable at (0.0).

[ofst-)
(c) Let f(x.:.r).slxy 5 4
(

Show that fxy(0,0)atfyl(0,0).
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8. (a) Find the points of maxima a;1d minima for the

function

f(x,y) = x? = 3xy? + 2y

(b) Expand x* + x2y? — y* about the point (1,1) upto
terms of second degree.

(c) Let f(x,y) = xy.

Find directional derivative of (=1,2) in the direction
i+2.
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