1929

Your Roll No.

B.Sc. Prog. / III

 \mathbf{E}

MATHEMATICS

MA-302 - Analysis, Algebra and Mechanics

(For Physical Sciences/Applied Sciences)

(Admissions of 2008 and onwards)

Time: 3 Hours Maximum Marks: 112

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.

Attempt all parts of Question No. 1 and any two parts from Question No. 2 to Question No. 7. All questions carry equal marks.

- (a) Define a Riemann integral of a bounded function on [a,b].
 - (b) Show that the set {5n : n □ Z} is a commutative ring with respect to usual addition and multiplication.
 - (c) (i) State Laws of static and kinetic friction.

- (ii) A particle moves in a plane with constant speed. Prove that its acceleration is perpendicular to its velocity.
- (a) Show that a bounded function is Riemann integrable
 on [a,b] if and only if for every □ > 0 there exist partition P of [a,b] such that

$$U(P,f) - L(P,f) < \square$$

- (b) A function f is defined on [0,1] by
 f(x) = 1/n 1/(n+1) < x ≤ 1/n n = 1,2,3......
 Prove that f is Riemann integrable on [0.1] and evaluate ∫₀¹ f(x)dx.
- (c) Show that $\int_a^\infty \frac{dx}{x^n} (a > 0)$ converges if and only if n > 1. Hence show that $\int_1^\infty \frac{\tan^{-1} x}{x^2} dx$ is convergent.
- 3. (a) Show that

$$\sqrt{\pi}\Gamma(2m) = 2^{2m-1}\Gamma(m)\Gamma(m+1/2)$$

Hence obtain the value of $\Gamma(1/4)$. $\Gamma(3/4)$

(b) Find the value of $\int_{c} (x^2 + y^2) dy$, taken in the counter clockwise sense along the quadrilateral with vertices (0,0), (2,0), (4,4) and (0,4).

- (c) Evaluate $\iint (x^2 + y^2) dx dy$ over the domain bounded by $y=x^2$ and $y^2=x$.
- (a) Define a field. Show that ring Z_p of integers modulo p is a field if and only if p is prime.
 - (b) Define characteristics of a ring. Prove that characteristic of an integral domain is either zero or a prime number.
 - (c) Define Ideal of a ring R. if A and B are two ideals of a ring R, Show that A+B is an ideal of R generated by A∪B.

5. (a) Prove that

- (i) Every subset of a linearly independent set is linearly independent.
- (ii) Every superset of a linearly dependent set is linearly dependent.
- (b) Show that mapping $T: R^2 \rightarrow R^2$ defined by T(x,y) = (y,x) is a linear transformation but mapping
 - S: $R^2 \rightarrow R^2$ defined by S(x,y) = (1+x,y) is not a linear transformation.
- (c) Let V be a vector space of dimension n and T: V-> V be a linear transformation such that Range T = Ker T Prove that n is even. Give an example of such linear transformation.

P.T.O.

1929

6. (a) Two beads of weight w and w' can slide on a smooth circular wire in a vertical plane. They are connected by a light string which subtends an angle 2β at the centre of the circle when beads are in equilibrium on the upper half of the wire. Prove that inclination α of the string to the horizontal is given by

$$\tan \alpha = (w \sim w'/w + w') \tan \beta$$

- (b) Define mass centre of a system of particles. Establish its existence and uniqueness.
- (c) Define Potential energy of the conservative system of particles at a configuration A. Find the Potential energy of a particle attracted towards a fixed point by a force of magnitude k²/rⁿ, r being the distance from the fixed point, k and n are any constants.
- (a) Find the expressions for radial and transverse components of velocity and acceleration of a particle moving along a plane curve r=f(θ).
 - (b) Show that motion of simple pendulum is simple harmonic motion. Also find its time period.
 - (c) A particle is projected from a fixed point o with a velocity u making an angle α with horizontal. If R is horizontal range and h is its greatest height, show that

$$u = \left[2g \left(h + \frac{R^2}{16h} \right) \right]^{1/2}$$
(100)