3334

Your Roll No.

B.Tech. (EC) / I

J

Paper EEC-104 - NETWORKS

Time: 3 hours

Maximum Marks: 70

(Write your Roll No. on the top immediately on receipt of this question paper.)

Answer any five questions.

All questions carry equal marks.

Assume missing data (if any).

- 1. (a) Differentiate between independent and dependent energy sources. Discuss the types of dependent energy sources.
 - (b) Find i_i and i_2 in fig. 1.

7+7

Fig.1

2. (a) Find the current in the 5 Ω resistor for the circuit shown in Fig. 2 using Norton's theorem.

Fig. 2

(b) Find i_0 and i from the circuit of Fig. 3 using Superposition theorem. 7+7

Fig. 3

3. (a) Determine the current through the 6 Ω resistor in the circuit of Fig. 4 using Theyenin's theorem.

Fig. 4

- (b) Prove that the power transfer from a dc source network to a resistive network is maximum when the internal resistance of the dc source network is equal to the load resistance.
 7+7
- 4. (a) Find the load impedance in Fig. 5 for maximum power to the load. Find the amount of maximum power.

Fig. 5

(b) In the network shown in fig. 6, $V_1=10 \text{ V}$, $V_2=4 \text{ V}$, $V_4=6 \text{ V}$. Also $I_1=2 \text{ A}$, $I_2=2 \text{ A}$ and $I_3=4 \text{ A}$. Check the validity of Tellegen's theorem. 7+7

Fig. 6

5. (a) Using Nodal method, find the current through r_2 in Fig. 7.

Fig. 7

7+7

(b) Find V_1 and V_2 in Fig. 8.

Fig. 8

6. (a) Find Z parameters of the following circuit shown in Fig. 9.

Fig. 9

(b) The Z parameters of a circuit are given by:

Obtain the transmission parameters.

7+7

P. T. O.

7. (a) From given Z parameters, find ABCD parameters.

6

(b) Find ABCD parameters in terms of h-parameters.

7 + 7

8. (a) State initial and final value theorem in Laplace transformation.

The current through a circuit element is $\frac{4s^2}{(s+7)}$. Find the current in t domain as $s \to 0$ and $s \to \infty$.

(b) In Fig. 10, the battery voltage is applied for a steady state period. Obtain the complete expression for the current after closing the switch K. Assume R₁=1 Ω, R₂=2 Ω, L=1 H, E=10 V.

7+7

Fig. 10