(This paper contains 3 printed pages)

Roll No.:

Sr. No. of Question Paper: 1773

F-3

Unique Paper Code: 2511104

Name of Course: B.Tech. Instrumentation

Name of Paper: Engineering Mathematics

Semester: I

Time: 3 Hours

Maximum Marks: 75

Question No. 1 is compulsory. Attempt any Five Questions.

Use of non-programmable scientific calculator is allowed.

- Q.1 (a) Find the nature of the vector $\overrightarrow{V} = (x+3y)\hat{\imath} + (y-3z)\hat{\jmath} + (x-2z)\hat{k}$, whether (3) it is conservative, solenoidal or both.
 - (b) If $F(\alpha)$ be the Fourier transform of f(t), find the Fourier transform of $\{f(t+a)\}$, where 'a' is a constant (3)
 - (c) Under what conditions can a function f(x) be expanded in a Fourier series? To what value does the series converge at a point of discontinuity? (3)
 - (d) Find $L\left(e^{2t}\cos 3t + \frac{4}{3}e^{2t}\sin 3t\right)$ where L represents the Laplace operator (3)
 - (e) Find the Z-transform of discrete unit step function u(k) (3)
- Q.2 (a) Prove $\vec{\nabla} \cdot (\vec{\varphi} \vec{\nabla} \times \vec{A}) = (\vec{\nabla} \times \vec{A}) \cdot \vec{\nabla} \vec{\varphi}$ (4)
 - (b) A fluid motion is given by $\vec{A} = (x^2 yz)\hat{\imath} + (y^2 xz)\hat{\jmath} + (z^2 xy)\hat{k}$. Is the (7) motion irrotational? If so, find its velocity potential.
 - (c) Verify that V satisfies the Laplace equation $\nabla^2 V = 0$, where $V = e^{3x+4y}\cos 5z$ (4)

Q.3 (a) Find the Fourier series of the function
$$f(x) = \begin{cases} 0 & -\pi < x \le 0 \\ x & 0 < x \le \pi \end{cases}$$
 (5)

(b) The displacement of a part of a machine is tabulated with corresponding angular moment 'x' of the crank. Express f(x) as a Fourier Series upto second harmonic

$f(x^{\circ})$ 1.80 1.10 0.30 0.16 0.50 1.30	$f(u^{\circ})$ 1 100 1 110 1 0 20	x°	0	30	60	90	120	150
x° 180 210 240 270	500 330	$f(x^\circ)$ 1	.80		0.30	0.16		
	500 330	r ⁰ 1	80	210	240	270		

(c) Find the Fourier Sine transform of $f(x) = e^{-ax}$ for $x \ge 0$ and a > 0. Hence (5) deduce the integral

$$\left(\int_0^\infty \frac{s.\, sinsx}{s^2 + a^2} \, ds\right)$$

- Q.4 (a) Using Laplace transform find the solution of the initial value problem $y''(t) + 25y(t) = 10 \cos 5t \; ; \; y(0) = 2 \text{ and } y'(0) = 0$ (5)
 - (b) Show that the Laplace transform of a piecewise continuous function f(x) with (5) period T is given by $L[f(x)] = \frac{1}{1 e^{-sT}} \int_0^T e^{-sx} f(x) dx$
 - (c) Obtain Inverse Laplace transform of the following function using convolution (5) theorem $L^{-1}\left(\frac{s^2}{(s^2+a^2)^2}\right)$
- Q.5 (a) Find the Z-transform of f(t) where $f(t) = \begin{cases} 10^k & k < 0 \\ 7^k & k \ge 0 \end{cases}$ (7)

and determine the region of convergence

(b) Find
$$Z^{-1}\left(\frac{1}{(z-3)(z-2)}\right)$$
 when $|z| < 2$ (5)

Q.6 (a) The temperature at any point in space is given by T = xy + yz + zx. Determine (3) the derivative of T in the direction of the vector $3\hat{i} - 4\hat{k}$ at the point (1,1,1)

(b) Prove that
$$\cosh^{-1}(x) = \log(x + \sqrt{x^2 - 1})$$
 (5)

(c) Prove that the half range cosine series of the function $x(\pi - x)$ in the range $0 < x < \pi$ is given by (7)

$$x(\pi - x) = \frac{\pi^2}{6} - \left[\frac{\cos 2x}{1^2} + \frac{\cos 4x}{2^2} + \frac{\cos 6x}{3^2} + \cdots \right]$$

Hence deduce

$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$

- Q.7 (a) If f(x) is an even function, derive the fourier coefficients, and hence write its (5) Fourier expansion
 - (b) A periodic square wave function (t), in terms of unit step function is (5)

$$f(t) = k[u_0(t) - 2u_a(t) + 2u_{2a}(t) - 2u_{3a}(t) + \dots]$$

Evaluate Laplace transform of f(t)

(c) Using convolution theorem, find the inverse Z-transform of $\left(\frac{z}{(z-a)}\right)^3$. (5) Deduce for $\left(\frac{z}{(z-1)}\right)^3$