[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 7810 F-2 Your Roll No......

Unique Paper Code : 2511201

Name of the Course : **B. Tech. Electronics** [DC-1.3]

Name of the Paper : Semiconductor Devices

Semester : II

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any five questions in all.
- 3. Question No. 1 is compulsory.
- 4. All questions carry equal marks.
- 5. Use of non-programmable scientific calculator is allowed.
- 1. (a) Explain the difference between direct and indirect bandgap semiconductors with the help of E-K diagram.
 - (b) Draw the energy level diagram of a p-n junction in (i) unbiased condition (ii) forward bias and (iii) reverse bias.
 - (c) What do you understand by Ohmic and Rectifying contacts?
 - (d) For an emitter current of 2 mA, collector current is 1.97 mA. Determine the common base current gain and base current?
 - (e) The Fermi-level in a semiconductor is 0.35 eV above the valence band. What is the probability of non-occupation of an energy state at the top of the valence band, at 300 K? (3×5)

- 2. (a) Explain the generation and recombination processes of charge carriers in a semiconductor. Also describe how it affects the rate of change of carrier concentration (continuity equation)?

 (8)
 - (b) Discuss the dependence of Fermi level on doping concentration and temperature. (4)
 - (c) In an intrinsic GaAs semiconductor with $n_i = 2 \times 10^{12} \text{ m}^{-3}$, the electron and hole mobilities are 0.85 and 0.04 m²V⁻¹s⁻¹ respectively. Calculate its conductivity. (3)
- 3. (a) Derive the expression for electric field within the depletion region. Also derive the expression for depletion width. (8)
 - (b) A Si step junction maintained at room temperature under equilibrium conditions has a p-side doping density of $N_A = 2 \times 10^{15} / \text{cm}^3$ and an n-side doping of $N_D = 10^{15} / \text{cm}^3$. Use the depletion approximation to compute the electric field at x = 0.
 - (c) What is law of mass action? Explain its significance. (3)
- 4. (a) Describe the four modes of operation of a bipolar junction transistor. Also determine the application of each. (8)
 - (b) For an ideal p-n-p transistor, the current components are given by $I_{Ep} = 3 \text{ mA}$, $I_{En} = 0.01 \text{ mA}$, $I_{Cp} = 2.99 \text{ mA}$, and $I_{Cn} = 0.001 \text{ mA}$. Determine (a) the emitter efficiency γ , (b) the base transport factor α_T , (c) the commonbase current gain α_0 , and (d) I_{CBO} . (4)
 - (c) Draw the input characteristics of common emitter BJT. (3)

5. (a) Sketch the basic structure of a Junction Field Effect Transistor (JFET) and explain its I-V characteristics. (8)

3

- (b) Explain accumulation, depletion and inversion process for an ideal Metal Oxide Semiconductor (MOS) structure under different biasing conditions. (4)
- (c) Calculate the drain current in a JFET for $V_{GS} = 0$, -2 and -4V, if $I_{DSS} = 25$ mA and $V_{GS(OFF)} = -5$ V. (3)
- 6. (a) What is Hall Effect? Consider a sample of Silicon doped with 10^{16} Phosphorous atoms per cm³. Find the Hall voltage in the sample, with $W = 700 \mu m$, $A = 5 \times 10^{-3} \text{ cm}^2 \text{ current I} = 2.5 \text{ mA}$ and $B_z = 10^{-4} \text{ Wb/cm}^2$. Also determine its type.
 - (b) What do you understand by breakdown of a p-n junction? Name its mechanisms. (4)
 - (c) Explain the working of a Solar cell. (3)
- 7. (a) Draw the doping profile of semiconductor controlled rectifier (SCR). Explain the working of an SCR using two transistor equivalent circuit. (8)
 - (b) Why do bands bend near the semiconductor surface for the ideal MOS structure under different biasing conditions? (4)
 - (c) In a Uni-junction Transistor $\eta = 0.8$, $V_p = 10.3$ V and $R_{B2} = 5$ k Ω . Determine R_{B1} and V_{BB} .

7810 4

Constants	Value
k	$1.38 \times 10^{-23} \mathrm{J/K}$
e	1.6×10^{-19} C
ε(Silicon)	11.9
$\epsilon_{_0}$	$8.854 \times 10^{-14} \text{F/cm}$
n _i (300 K)	$1.45 \times 10^{10} \text{cm}^{-3}$
for Si	