[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 7972 F-2 Your Roll No......

Unique Paper Code : 1141202

Name of the Course : B.Tech. Polymer Science

Name of the Paper : Unit Operations (DC-1.4)

Semester : II

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt five questions in all.
- 3. Question No. 1 is compulsory.
- 4. Use of calculator is allowed and log table may be provided.
- 1. (a) By using definitions and standards convert atmospheres to pound force square inch.
 - (b) Explain jet mixers in fluid mixing.
 - (c) Define Wein's law of displacement for black body radiation.
 - (d) Explain force circulation evaporators and its significance.
 - (e) Define evaporator capacity in term of heat transfer.
 - (f) Describe type of plate efficiency in distillation process.
 - (g) Explain Newtonian and non-Newtonian fluid with example.
 - (h) Illustrate thermal conductivity and steady state conduction.
 - (i) Write short note on air cooled heat exchangers. (9×3)
- 2. (a) In the manufacturer of acetic acid by oxidation of acetaldehyde, 100 mole of acetaldehyde is feed to reactor per hour. The product leaving the reactor contains 14.81% acetaldehyde, 59.26% acetic acid and rest is oxygen. Find percentage conversion of acetaldehyde.

(b)	Explain equation	for flash	distillation	of binary	mixtures.
(~)	prasin oquation	101 114011	distillation	or omai	, illintuitos.

(c) Describe leaching and moving bed leaching.

(5,4,3)

- 3. (a) Derive the equation for steady-state heat transfer through a spherical shell of inner radius r_1 and outer radius r_2 .
 - (b) Explain kettle type boilers.
 - (c) Write short note on azeotropic and extractive distillation.

(5,4,3)

- 4. (a) Derive Bernoulli equation without friction.
 - (b) Write short note on types of agitator impliers.
 - (c) Discuss relationship between murphee efficiency and local efficiency.

(5,4,3)

- 5. (a) The carbon mono oxide is reacted with hydrogen to produce methanol. Calculate from the reaction,
 - (i) Stoichiometric ratio of H₂ to CO
 - (ii) Moles of CH₃OH produced per moles of CO reacted
 - (iii) Weight ration of CO to H₂ if both are fed to reactor in stoichiometric proportion
 - (iv) Quantity of CO required to produce 1000 kg of methanol
 - (v) Quantity of H₂ required to produce 1000 kg of methanol
 - (b) Discuss combined heat transfer equation using conduction-convection and radiation.
 - (c) Write short note on type of evaporators.

(5,4,3)

- 6. (a) Derive equation for quantitative calculation of radiation between two black surfaces.
 - (b) Discuss penetration theory of mass transfer.
 - (c) Explain Fourier law of heat transfer.

(5,4,3)