3287 •

Your Roll No.....

B.Tech (E/EC) / II

J

EEE / EEC - 201 Paper - MATHEMATICS - II

Time: 3 hours

Maximum Marks:70

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions. Assume missing data, if any.

All questions carry equal marks.

- 1 a) Find the angle between the tangent planes to the surfaces x log $z = y^2 1$ and $x^2y = 2 z$ at the point (1, 1, 1).
 - b) Use Divergence theorem to evaluate $\int \int_{S}^{C \to \Lambda} \overrightarrow{F} \cdot \overrightarrow{n} \, ds, \text{ where } \overrightarrow{F} = 4xi^{\Lambda} 2y^{2}j^{\Lambda} + z^{2}k^{\Lambda} taken$

over the region bounded by the cylinder $x^2 + y^2 = 4$ and the planer z = 0, z = 3.

- Show that $\nabla^2(r^{\ominus}r) = \frac{4}{r}$
 - b) Find the work done by the force

$$\vec{f} = (2y + 3) \hat{i} + xz \hat{j} + (yz - x) \hat{k}$$

when it moves a particle from the point (0, 0, 0) to the point (2, 1, 1) along the curve $x = 2t^2$, y = t and $z = t^3$.

P.T.O

3 a) Show that

$$\int_0^1 x^m (\log x)^n dx = \frac{(-1) n!}{(m+1)^{n+1}}$$

where n is a positive integer and $m \ge -1$.

- b) Prove that $J_{-n}(x) = (-1)^n J_n(x)$, where n is a positive integer.
- 4 a) If L [F(t)] = F(s), then show that L[e^{at} f(t)] = F (s a) and with the help of this find the value of L (cos at sinh at).
 - b) Solve the following differential equation by using Laplace transform:

07

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 2y = 1 - 2x$$

given
$$y = 0$$
, $\frac{dy}{dx} = 4$ at $x = 0$.

5 a) Using the convolution theorem, find $L^{-1} \left[\frac{s^2}{(s^2 + a^2)(s^2 + b^2)} \right], \quad a \neq b.$

- b) Evaluate the following:
 - (i) L (t² Cos at)

(ii)
$$L\left[e^{-4t} \frac{\sin 3t}{t}\right]$$

3287

3

6 a) Determine the analytic function:

$$f(z) = u + iv$$
, if
 $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 2x + 1$.

- b) Integrate $f(z) = z^2$ from A(1, 1) to B(2, 4) along the curve $c: x = t, y = t^2$.
- 7 a) Using Contour itegration Evaluate

$$\int_{0}^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta,$$

b) Using Rodrigue's formula, evaluate

$$\int_{-1}^{+1} x^m P_n(x) dx.$$