3263

Your Roll No.

B. Tech. (M) / II

Paper II— ELECTRONICS

(EME-202)

Time: 3 hours

Maximum Marks: 70

(Write your Roll No. on the top immediately on receipt of this question paper.)

Q. No. 1 is compulsory. Answer any four questions from the rest.

Assume any missing data suitably.

- 1. (a) Differentiate between Avalanche and Zener breakdown in diodes.
 - (b) Why do you give DC bias for a transistor amplifier circuit?
 - (c) Why do we prefer common collector configuration as last stage of cascaded amplifiers?
 - (d) 'The input resistance of JFET is high.' Is it true or false? Justify your answer.
 - (e) Explain virtual ground concept with respect to an operational amplifier.
 - (f) Make a full adder using half adders and a gate. Explain its working with the help of a neat diagram.

- (g) Preset and clear inputs of a flipflop are said to be asynchronous inputs. Why. $7\times2=14$
- 2. (a) In a full wave rectifier the coltage applied to each diode is 240 sin 377t, the load resistance R_L = 2 k
 Ω and each diode has a forward resistance of 40
 Ω. Determine the following:
 - (i) Peak value of current
 - (ii) DC value of current
 - (iii) Rms value of current
 - (iv) Rectifier efficiency
 - (v) Ripple factor
 - (v) Output ripple frequency.

(b) Draw the output waveform and transfer characteristics of the circuit shown in fig. 1. 3

7

Fig.1

(c) The Zener diode shown in fig. 2 has a fixed voltage drop of 18 V across it so long as the Zener current is maintained between 200 mA and 2 amp. (i) Find the value of R so that the load voltage remains 18 V as input voltage is free to vary from 22 V to 28 V. (ii) Find the maximum power dissipated by the Zener diode.

Fig. 2

- 3. (a) With the help of a neat diagram explain the output characteristics of common emitter configuration in detail.
 - (b) Find I_C and V_{CE} for the circuit shown in fig. 3. What happens to V_{CE} if β increases due to temperature?

Fig. 3

- (c) Explain thermal runaway and how it is removed using voltage divider biasing circuit.
- 4. (a) An *n*-channel JFET has $V_P = -4$ V and $I_{DSS} = 10$ mA. It is used in circuit shown in fig. 4 with $V_{DD} = +12$ V. Determine the value of R_D and R_S so that $I_D = 3$ mA and $V_{OS} = 5$ V.

- (b) Discuss the advantages of regative feedback in amplifier.
- (c) The voltage gain of an amplifier without feedback is 2000. Calculate the voltage gain of the amplifier if negative feedback is introduced in the circuit. Assume feedback factor as 0.01.
- 5. (a) A common emitter transistor amplifier circuit has the following characteristics: $h_{ie}=1000 \ \Omega$, $h_{fe}=50$, $h_{re}=2.5\times10^{-4}$, $h_{oe}=25\times10^{-6} \ \text{A/V}$. If the load resistance $R_L=10 \ \text{k}\Omega$ and source resistance is

7

- 100 Ω , find input resistance, output resistance, and the voltage, current and power gain. 7
- (b) With the help of a neat circuit diagram, explain the working of a Wien bridge oscillator. Derive the expression for frequency of oscillations and condition for sustained oscillations.
- 6. (a) With the help of neat diagrams explain the working of Op-Amp based integrator and differentiator. Derive the respective equations for output voltage.
 - (b) Explain the working of a class B push-pull power amplifier.

7. (a) With the help of a neat diagram explain the working of a 4 input odd parity checker. 5

(b) Minimize:

$$F(ABCD) = \sum m(1, 3, 7, 11, 15) + d(0, 2, 5)$$
 5

- (c) Prove that $\overrightarrow{ABC} + \overrightarrow{BCD} + \overrightarrow{AD} = \overrightarrow{AD} + \overrightarrow{BC}$
- 8. Write short notes on any two:
 - (i) SCR as a full wave controlled rectifier
 - (ii) Frequency response of RC coupled amplifier
 - (iii) Working of an enhancement MOSFET
 - (iv) 555 timer. $2 \times 7 = 14$