3289

Your Roll No.

B. Tech. (EEE) / II

J

Paper III— DIGITAL ELECTRONICS (EEE-203)

Time: 3 hours

Maximum Marks: 70

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory. Answer any four out of the rest.

- 1. (a) What is concept of duality? State the duality for $(x+\overline{x}y)$.
 - (b) Convert (56)₁₀ into Binary code and excess-3 code.
 - (c) Simplify A $(A\overline{B}+\overline{C})+\overline{AC}$
 - (d) Express y = (A+B+C) in canonical SOP form.
 - (e) Realise Y = (A+B+C) by using NAND gate only.
 - (f) What is race-around condition in J-K Flip-Flop? State the method to overcome it.
 - (g) What is the function of an encoder? Give an example of it.
- 2. (a) Perform the subtraction by using 2's complement and 1's complement.

(i) 11010 + 1101

$$(ii)$$
 $100 - 110000$

8

- (b) Give the representation of decimal digits in 3321 weighted code. The representation should be such as to quality for reflected code.
- 3. (a) Express the following functions in a sum of minterms and a product of maxterms:

(i)
$$F(A, B, C, D) = (A + \overline{B} + C)(A + \overline{B})(A + \overline{C} + \overline{D})$$

 $(\overline{A} + B + C + \overline{D})(B + \overline{C} + \overline{D})$

(ii)
$$F(W, X, Y, Z) = \overline{Y}Z + WX\overline{Y} + WX\overline{Z} + \overline{W}\overline{X}Z$$

(b) Simplify the boolean function F in sum of products using don't care conditions 'd':

$$F = \overline{Y} + \overline{X} \overline{Z}$$
, with $d = YZ + XY$

- 4. (a) Design a combinational circuit that converts BCD numbers to Ex-3 numbers.
 - (b) Design a combinational circuit that checks the number of 1's present in four bit code to be even.
- (a) With neat diagram discuss the operation of a BCD adder.
 - (b) Implement the function $F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$ by using 8:1 MUX 7
- 6. (a) Design a counter with the following binary sequence: 0, 1, 3, 2, 6, 4, 5, 7 and repeat. Use RS Flop-Flop.

- (b) Design a Mod-8 counter by cascading two counters. Give the state table and state whether this Mod-8 counter is Synchronous or Asynchronous.
- 7. (a) Show the NAND gate version of J-K Flip-Flop with preset and clear input. Give the truth table and excitation table for this FF. Also justify that preset and clear inputs are Asynchronous input. 7
 - (b) With neat block diagram, explain the working of a4 bit up-down counter. Give its timing diagram.
- 8. Write notes on the following:
 - (i) SISO Shift Register
 - (ii) ECL NOR Gate.

7,7

- 7 B. C.

Barton de la companya de la company

,€