Time: 3 hours

Your Roll No.

B. Tech. (EE/EC) / H

PAPER: EEE/EEC-201- MATHEMATICS - II

Maximum Marks: 70

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions. All questions carry equal marks. Assume missing data, if any.

- 1. (a) Show that $\vec{F} = (2xy + z^3)i + x^2i + 3z^2xk$ is a conservative field. Find its scalar potential and also the work done in moving a particle from (1, -2, 1) to (3, 1, 4).
 - (b) Show that

$$\iiint \nabla \times \vec{\mathbf{F}} \, d\mathbf{V} = \frac{8}{3} (\mathbf{j} - \mathbf{k})$$

where $\vec{F} = (2x^2 - 3z)\mathbf{i} - 2xy\mathbf{j} - 4x\mathbf{k}$ and V is the closed region bounded by the planes x=0, y=0, z=0 and 2x+2y+z=4.

Verify Stokes' theorem for the function:

$$\vec{F} = x^2 \mathbf{i} + xy \mathbf{i}$$

integrated round the square whose sides are x=0, y=0, x=a and y=a in the plane z=0.

(b) A vector field is given by:-

P. T. O.

$$\vec{F} = (\sin y)\mathbf{i} + x(1 + \cos y)\mathbf{j}$$
.

Evaluate the line integral over the circular path $x^2+y^2=a^2$, z=0

3. (a) Show that:--

$$\left[J_0(x)\right]^2 + 2\left[J_1(x)\right]^2 + 2\left[J_2(x)\right]^2 + \dots = 1$$

- (b) Determine the values of $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$.
- 4. (a) If $L[f_1(t)] = F_1(s)$ and $L[f_2(t)] = F_2(s)$, then show that:

$$L\int_{0}^{t} f_{1}(x)f_{2}(t-x) dx = F_{1}(s) \cdot F_{2}(s).$$

(b) Find the solution of initial value problem, by using Laplace transform:—

$$y''+9y=6\cos 3t$$

given $y(0)=2$ and $y'(0)=0$.

5. (a) Find the Laplace transform of the periodic function:

$$f(t)=t \qquad 0 < t < c$$

$$=2c-t, \quad c < t < 2c$$

(b) Evaluate:

(i)
$$L^{-1} \left[\frac{s-1}{s^2-6s+25} \right]$$

(ii)
$$L\left[\int_{0}^{\infty} te^{-3t} \sin t \, dt\right].$$

6. (a) Find the image of the infinite strip:—

$$(i)$$
 $\frac{1}{4} < y < \frac{1}{2}$

(ii)
$$0 < y < \frac{1}{2}$$

under the mapping function $w = \frac{1}{z}$. Depict the regions so obtained graphically and interpret.

- (b) Evaluate $\int_{0}^{1+i} (x^2+iy) dz$, along the path y=x.
- 7. (a) Evaluate the following by Cauchy's integral formula:

(i)
$$\int_{C} \frac{e^z dz}{(z+1)^2}$$
, where C is $|z-1|=3$

(ii)
$$\int_{C} \frac{\sin^2 z}{(z-\pi/6)^3} dz$$
, where C is $|z| = 1$.

(b) Show that:—

$$\int_{0}^{\infty} x^{y-1} e^{-x} (\log x)^{n} dx = \frac{d^{n}}{dy^{n}} (\lceil y)$$