[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1595 F-3 Your Roll No......

Unique Paper Code : 2351301

Name of the Course : B.Sc. (H) Mathematics

Name of the Paper : Algebra – II (Group Theory I)

Semester : III

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any two parts from each question.
- 3. All questions are compulsory.
- 1. (a) Let a and b be elements of an Abelian group and let n be any integer. Show that $(ab)^n = a^nb^n$. Is this also true for non-Abelian groups?
 - (b) Let H be a subgroup of a group G. Define the centralizer of H. Show that the centralizer of H is a subgroup of G.
 - (c) (i) Let $H = \{a + ib : a, b \in \mathbb{R}, ab \ge 0\}$. Prove or disprove that H is a subgroup of \mathbb{C} under addition.
 - (ii) Let G be a group such that $ab = ca \Rightarrow b = c \ \forall \ a, b, c \in G$. Show that G is Abelian. (6,6,6)
- 2. (a) Let $G = \langle a \rangle$ be a cyclic group of order n. Then, $G = \langle a^k \rangle$ if and only if gcd(k, n) = 1.
 - (b) If the pair of cycles $\alpha = (a_1, a_2, ..., a_m)$ and $\beta = (b_1, b_2, ..., b_n)$ have no entries in common, then show that $\alpha\beta = \beta\alpha$.

- (c) (i) Let $H = \{\beta \in S_5 : \beta(1) = 1 \text{ and } \beta(3) = 3\}$. Prove that H is a subgroup of S_5 .
 - (ii) Let $\beta = (1\ 2\ 3)(1\ 4\ 5)$. Write β^{99} in cycle form. (6,6,6)
- 3. (a) If G is a finite group and H is a subgroup of G, then show that |H| divides |G|. Moreover, prove that the number of distinct left (right) cosets of H in
 - G is $\frac{o(G)}{o(H)}$. Also, show that in a finite group, the order of each element of the group divides the order of the group.
 - (b) (i) State and prove Orbit-Stabilizer Theorem.
 - (ii) Let $G = \{(1), (132)(465)(78), (132)(465), (123)(456), (123)(456), (123)(456)(78), (78)\}$. Find orb_G(1), orb_G(4) and stab_G(7).
 - (c) (i) Let G be the group of non-zero complex numbers under multiplication and let $H = \{x \in G : |x| = 1\}$. Give a geometric description of the cosets of H in G.
 - (ii) If a group G has no non-trivial subgroup, show that G must be finite of prime order. (6.5,6.5,6.5)
- 4. (a) (i) If N is a normal subgroup of G and $\left| \frac{G}{N} \right| = m$, show that $x^m \in N, \ \forall \ x \in G$.
 - (ii) Let H be a normal subgroup of a finite group G. If $gcd\left(|x|, \left|\frac{G}{H}\right|\right) = 1$, show that $x \in H$.
 - (b) (i) Prove that a subgroup H of G is normal in G if and only if: $xHx^{-1} \subseteq H, \quad \forall x \in G.$

- (ii) Let H be a subgroup of a group G such that $x^2 \in H$, $\forall x \in G$. Show that H is a normal subgroup of G.
- (c) (i) Prove that A_n is normal in S_n.
 - (ii) Let N be a normal subgroup of a group G. If N is cyclic, prove that every subgroup of N is also normal in G. (6.5,6.5,6.5)
- 5. (a) If M and N are normal subgroups of a group G and N \leq M, prove that $\frac{G/N}{M/N} \text{ is isomorphic to } \frac{G}{M}.$
 - (b) Let G be a group of permutations and consider the multiplicative group $\{1,-1\}$. For each $\sigma \in G$, define

$$\Phi: G \to \{1,-1\}$$

by

$$\Phi(\sigma) = \begin{cases} 1, & \text{if } \sigma \text{ is an even permutation} \\ -1, & \text{if } \sigma \text{ is an odd permutation} \end{cases}$$

Prove that Φ is a homomorphism. Also, find Ker Φ .

- (c) Prove that there is no onto homomorphism from $Z_8 \oplus Z_2$ to $Z_4 \oplus Z_4$.

 (6,6,6)
- 6. (a) State and prove Cayley's theorem.
 - (b) Let $\phi: G \to G'$ be an isomorphism of a group G onto a group G'.

Then, prove that:

- (i) G is cyclic if and only if G' is cyclic.
- (ii) For any elements a and b in G, a and b commute if and only if $\varphi(a)$ and $\varphi(b)$ commute.

- (iii) If K is a subgroup of G, then $\varphi(K) = {\varphi(k) : k \in K}$ is a subgroup of G'.
- (c) (i) Prove that $\mathbb Z$ under addition is not isomorphic to $\mathbb Q$ under addition.
 - (ii) Let φ be a homomorphism from U(30) to U(30) such that $\varphi(7) = 7$ and Ker $\varphi = \{1,11\}$. Find all x such that $\varphi(x) = 7$. (6.5,6.5,6.5)