This question paper con-	tains 4+1 printed pa	ages]			
		Roll No.			
S. No. of Question Paper	: 1568				·
Unique Paper Code	: 2341303		•	F-3	
Name of the Paper	: Discrete Struct	ures			
Name of the Course	: B.Tech. in Com	puter Science			,
Semester	: ПІ				
Duration: 3 Hours	• •			Maximum M	larks : 75
(Write your Ro	oll No. on the top im	mediately on rec	eipt of this ques	stion paper.)	•
Section A is compulsory.					
Do any four questions from Section B.					
	•	Section A			
1. (a) A collection of 10 electric bulbs contains 3 defective ones:					
(i) In how many ways can a sample of four bulbs be selected?					
	many ways can a gulbs and 2 defective		oulbs be selecte	ed which cont	ains two
(b) Suppose $f_1(x)$	x) is $O(g_1(x))$ and	$f_2(x)$ is $O(g_2(x))$)) then show	that $(f_1(x) +$	$f_2(x)$) is

(c)

 $O(\max(g_1(x), g_2(x))).$

Evaluate the sum :

(*d*) Show that:

(i)

2

$$\overline{p} \to (q \to r)$$
 and $q \to (p \lor r)$

are logically equivalent.

Determine the discrete numeric function of the generating function: (e)

$$A(Z) = Z^2/(4 - 4Z + Z^2).$$

Prove that every bipartite graph is 2-colorable. (f)

Using master theorem, find the solution to the recurrence: (g)

3

$$4T(n/2) + n^2 = T(n).$$

Consider a set A = $\{2, 7, 14, 28, 56, 84\}$ and the relation $a \le b$ if and only if adivides b. Give the Hasse diagram for the Partial order set (A, \leq) .

How many edges are there in an undirected graph with two vertices of degree 7, four vertices of degree 5, and four vertices of degree 6?

Show that a full m-ary balanced tree of height h has more than m^{h-1} leaves. (i)

Let |A| = n and |B| = m where m > n. Give the number of one-to-one functions, (*k*) $f: A \rightarrow B$ that can be defined?

2

Show that for a graph to be planar it should at least one vertex of degree 5 or less.

Write the contrapositive and inverse of the following statements:

If you try hard, then you will win.

Section B

- (a) Find the number of integers between 1 and 250 that are divisible by any of the integers2, 3, 5 and 7.
 - (b) Let $X = \{1, 2, 3, 4, 5, 6\}$, and define a relation R on X as $R = \{(1, 2), (2, 1), (2, 3), (3, 4), (4, 5), (5, 6)\}$. Find the reflexive and transitive closure of R.
 - (c) Prove that $n^3 n$ is divisible by 3 for any integer $n \ge 0$.
- 3. (a) Let 'a' be a numeric function such that:

$$a_r = \begin{pmatrix} 2 & 0 \le r \le 3 \\ 2^{-r} + 5 & r \ge 4 \end{pmatrix}$$

- (i) Determine Δa
- (ii) ∇a .
- (b) Find the total solution of the recurrence relation:

 $a_n + 4a_{n-1} = 7$, where $a_0 = 3$.

(c) How many students must be in a class to guarantee that at least two students receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 points?

Draw the graph K₆ and answer the following questions: 1+3What is the degree of each vertex? *(i)* Is K₆ planar? A connected planar graph G has 10 vertices each of degree 3. Into how many regions (b) does a representation of this planar graph split the plane? How many leaves does a regular (full) 3-ary tree with 100 vertices have? (c) 2 5. (a) Draw graphs each having six vertices such that: Graph is Hamiltonian but not Eulerian Graph is Eulerian but not Hamiltonian. (b) Show that the sum of degree of all vertices in G is twice the number of edges of in G. 3 What is the condition for $K_{m,n}$ to have an Euler path or circuit? Justify your (c) answer. 3 Use the insertion sort algorithm to sort the list 2, 14, 9, 13, 12. 6. (a) Determine whether each of the functions 2^{n+1} and 2^{2n} is $O(2^n)$. (b) Using substitution method, prove that T(n) is $O(n \lg n)$ given that: (c)

$$T(n) = 2T\left(\frac{n}{2}\right) + n.$$

- 7. (a) Show that $(p \to q) \land (r \to q) \Leftrightarrow (p \lor r) \to q$ are logically equivalent using the laws of logical equivalences.
 - (b) Show that:

$$(p \land q) \rightarrow (p \lor q)$$

is a tautology with the help of truth table.

>

(c) Show that the premises "It is not sunny this afternoon and it is colder than yesterday;"
"We will go swimming only if it sunny;" "If we do not go swimming, then we will take a canoe trip"; and "If we take a canoe trip, then we will be home by sunset" lead to the conclusion—"We will be home by sunset".