[This Question paper contains 2 printed pages] 🔘 🐇 SL. No. of Cultion la Name of the course B. Tech Electronics

B. Tech Electronics

Semester

Name of the paper

Unique Paper Code

Analog Electronics-I

2511303

Duration

3 hours

Maximum Marks

Instructions for the candidates:

- 1. Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt FIVE questions in all.
- 3. Question No. 1 is compulsory.
- 4. Use of Scientific Calculator is allowed.

Sketch the output of the given circuit with suitable explanation Q1(a)

- Describe the characteristics of an Ideal Diode. Give the short-circuit and open- (3 Marks) Q1(b) circuit equivalent of the same.
- Draw and explain the Output Characteristics of Common Base (CB) transistor Q1(c) (n-p-n type).
- A colpitts oscillator is used as the local oscillator to produce frequencies from. (3 Marks) Q1(d) 1MHz to 2Mhz. What must be the inductance of the coil if the minimum C obtainable is 43pF. What must be the maximum desired value of capacitor to produce desired frequency range?
- Explain why Class B amplifier is preferred over Class A for high power Q1(e) applications such as audio power amplifier,
- Q2(a) What are Clampers? Give one application. Draw and explain the circuit of (6 Marks) blased negative clamper.
- Define ripple factor. Draw the circuit for the following and derive an Q2(b) (6 Marks) expression of ripple factor
 - (i) Full wave rectifier (FWR), (ii) Half wave rectifier (HWR)
- Q2(c) What is the ripple factor of a Full Wave Rectifier (FWR) with capacitor filter if (3 Marks) the value of $R_L=2K\Omega$ and $C=5\mu F$.
- Q3(a) Derive the expression of Voltage gain for Low-, Mid- and High-Frequency (8 Marks) ranges for RC coupled amplifier. Draw the frequency response of the same.
- Q3(b) Find the operating point and draw the load line of a fixed bias circuit using [6] Marks) n-p-n transistor for 5 (a) β =300 (b) β=300

Given $V_{cc}=15$ V, $R_8=200$ K Ω , $R_c=1$ K Ω .

Q3(c) What is the difference between AC and DC load line? (2 Marks)

- Q4(a) Derive the expression of Input Resistance, Current Gain, Voltage Gain and (8 Marks)
 Output Resistance for Voltage Shunt Feedback circuit.
- Q4(b) Find the Input Resistance, Voltage Gain and Output Resistance of a Voltage (3 Marks) Series Feedback amplifier. Given A_V =750, β =0.1, R_i =1K Ω and R_0 =10K Ω .
- Q4(c) Internal gain of a basic amplifier is 60dB. A negative feedback with a feedback (4 Marks) factor of 0.005 is applied to it. Calculate the percentage change in the overall gain of the feedback amplifier if the internal gain reduces by 10%.
- Q5(a) Draw and explain the functioning of single tuned voltage amplifier if output is (8 Marks) taken from inductive load or a capacitive load. What are the limitations of single tuned amplifier?
- Q5(b) Draw the output characteristics of n-channel JFET and give suitable (4 Marks) explanation.
- Q5(c) For a class B amplifier, providing a 20V peak signal to a 16 Ω speaker and a (3 Marks) power supply of V_{cc} = 30V, determine the input power, output power and efficiency?
- Q6(a) Draw and Explain the piecewise linear model for a diode. (4 Marks)
- Q6(b) Determine V_L , I_L , I_Z and I_R for the circuit given below. Given R_L =180 Ω . (6 Marks)

- Q6(c) Assume that a n-p-n Si-transistor based Voltage divider circuit with β =50, (5 Marks) V_{BE} =0.6V, V_{CC} =22.5V and R_C =5.6K Ω , it is desired to establish a Q-point at V_{CE} =12V, I_C =1.5mA and a stability factor S ≤6. Find R_1 , R_2 and R_E .
- Q7(a) Draw the circuit diagram of RC-Phase shift Oscillator (transistor based) circuit (8 Marks) and derive the expression of the frequency of oscillation for the same.
- Q7(b) Explain using i_c - i_b relationship, why higher order harmonics distortion terms (3 Marks) like 2ω , 4ω , 6ω exist in power amplifiers.
- Q7(c) Explain the following terms in case of Power Amplifiers: (4 Marks)
 - i. Frequency Distortion
 - ii. Phase Distortion