## 6301

[This question paper contains 2 printed pages]

Unique Paper Code

: 2222301

Name of the Paper

: Thermal Physics

Name of the Course

: B. Tech. (Polymer Science) (FYUP Scheme)

Semester

: III- semester

Duration: 3 hours

Maximum Marks: 75

Attempt five questions in all including Question no. 1 which is compulsory.

All questions carry equal marks.

Attempt any five of the following:

- (a) Derive an expression for work done during an isothermal expansion of an
- (b) State zeroth law of thermodynamics. Hence define temperature.
- (c) Calculate the change in entropy when 1 mole of an ideal gas expands isothermally to three times its original volume.  $R = 8.31 \, J \, mol^{-1} K^{-1}$
- (d) A refrigerator is to maintain eatables kept inside at 9 °C. If room temperature is 36 °C, calculate coefficient of performance.
- (e) State second law of thermodynamics in terms of entropy.
- (f) The mean free path  $\lambda$  of the molecules of a gas at pressure P and temperature T is  $2x10^{-5}$  cm. Calculate  $\lambda$  under considerations: (i) P, 2T and (ii) 2P, T.
- (g) State law of equipartition of energy.
- (a) Applying first law of thermodynamics, obtain relation between pressure Q2. and volume for an ideal gas undergoing adiabatic process. Hence, write relation between pressure & temperature and also volume & temperature.
- (8)

(7)

(10)

- (b) Using first law of thermodynamics, prove:

  - $C_P C_V = R$ ; for 1 mole of an ideal gas.  $\frac{E_S}{E_T} = \frac{C_P}{C_V} = \gamma$ ; where  $E_S$  &  $E_T$  are adiabatic and isothermal elasticity
- Q3. (a) Describe construction and working of Carnot's reversible heat engine. Derive expression for its efficiency.
  - (b) A Carnot's engine has the same efficiency, (i) between 100K & 500K and (5)(ii) between T K & 900K. Calculate the temperature T of the sink.
- (a) Define four thermodynamic potentials. Using these, derive Maxwell's four (8)

|     |                                                                                                                                                                                                                                                                 | •    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     |                                                                                                                                                                                                                                                                 |      |
|     | thermodynamic relations.  (b) With the help of suitable thermodynamic relation, deduce Clausius-Clapeyron's latent heat equation. Hence explain the effect of pressure on  i. Boiling point of a liquid  ii. Melting point of a solid                           | (7)  |
| Q5. | <ul> <li>a) Define entropy and discuss its physical significance. Show that entropy does not change during a cyclic reversible process and always increases during an irreversible process.</li> <li>b) Derive the two TdS equations.</li> </ul>                | (9)  |
| Q6. | <ul> <li>a) Define mean free path λ of the molecules of a gas. If d is the diameter of each molecule and n is the no. of molecules per unit volume, derive expression for λ assuming that all the molecules except the one under</li> </ul>                     | (7)  |
|     | <ul> <li>consideration are at rest.</li> <li>b) On the basis of kinetic theory of gases, derive an expression for the coefficient of viscosity η of a gas in terms of mean free path. Show that η is independent of pressure at a given temperature.</li> </ul> | (8)  |
| Q7. | Derive Maxwell-Boltzmann's law for the distribution of molecular velocities in an ideal gas. Hence derive the expressions for most probable velocity, average velocity and root mean square velocity. Discuss it graphically.                                   | (15) |
| Q8. | a) Draw curves for the distribution of energy in the spectrum of black body for temperatures T <sub>1</sub> and T <sub>2</sub> where T <sub>1</sub> <t<sub>2. Discuss the important conclusions</t<sub>                                                         | (7)  |
|     | drawn from these curves.  b) Derive Planck's radiation formula for a black body. Show that Planck's radiation law reduces to Wein's law for shorter wavelengths and Rayleigh-Jean's law for longer wavelengths.                                                 | (8)  |
|     |                                                                                                                                                                                                                                                                 |      |
|     |                                                                                                                                                                                                                                                                 |      |