Your	Roll	No.	
Your	Roll	No.	

B. Tech. (E) / IV

Δ

PAPER EEE-402— SWITCHGEAR AND PROTECTION

Time: 3 hours

Maximum Marks: 70

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions.

All questions carry equal marks.

Assume missing data suitably, if any.

- A transformer rated at 30 MVA and having a short circuit reactance of 0.05 p.u. is connected to the bus bar of a generating station which is supplied through two 33 kV feeder cables each having an impedance of 1+j2 Ω. One of the feeders is connected to a generating station using generator capacity of 60 MVA connected to its bus bars having a short circuit reactance of 0.1 p.u. and other feeder to a generator with 80 MVA and having a reactance 0.15 p.u. Calculate the kVA supplied to the fault in the event of a short circuit occurring between the secondary terminals of the alternators.
- 2. A generator rated 100 MVA, 20 kV has $X_1=X_2=20\%$ and $X_0=5\%$. Its neutral is grounded through a reactor

of 0.32 ohms. The generator is operating at rated voltage with load and is disconnected from the system when a single line-to-ground fault occurs at its terminals. Find the sub-transient current in the faulted phase and line-to-line voltage.

- 3 Describe the construction, principle of operation and applications of:
 - (i) Rod gaps
 - (ii) Expulsion gap
 - (iii) Valve type lightning arrester.

14

- 4 A circuit breaker is rated as 2500 A, 1500 MVA, 33 kV, 3 seconds. 3-phase oil C.B. Determine the rated symmetrical breaking current, rated making current, short time rating and rated service voltage.
- 5 Are 11 kV 50 Hz alternator is connected to a system which has inductance and capacitance per phase of 10 mH and 0.01 µF respectively. Determine:
 - The maximum voltage across the breaker contacts
 - (ii) Frequency of transient oscillations
 - (iii) The average RRRV
 - (iv) The maximum RRRV.

14

6. Compare the performance and characteristics of:

(i)	Minimum oil CB and Air blast C.B.								
(ii)	i) Air blast C.B. and Bulk oil C.B.								
		7	Universal derive the fo				this			
((i)	Impe	edance Relay	/ ;						
((ii)) Reactance Relay;								
(iii)	ii) Mho Relay.								
	i		aracteristics n and no-ope		cate clearly	the zon	es of 14			
8. ((a)	Explain the terms:								
	1	(i)	Restriking	Voltage	•					
	,	(ii)	Recovery V	'oltage	•					
		(iii)	RRRV.				6			
((b)		cribe the co applications				ation 8			