[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1532-D F-7 Your Roll No......

Unique Paper Code : 2513703

Name of the Paper : Numerical Methods

Name of the Course : B.Tech. Instrumentation (Allied Course)

Semester : VII

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on the receipt of this question paper.

- 2. Attempt five questions in all.
- 3. Question No. 1 is compulsory.
- 4. Use of scientific calculator is allowed.
- 1. (a) Define "order of a numerical method". (3)
 - (b) Explain the significance of interpolation. (3)
 - (c) Define local and global truncation errors in numerical analysis. (3)
 - (d) Find the root of the equation $x^3 x 1 = 0$ using bisection method, correct up to three decimal places. (3)
 - (e) Solve $\int_{0}^{4} 2^{x} dx$ using trapezoid rule. (3)
- 2. (a) Solve the following equation using Gauss-Jordan method.

$$x + y + z = 9$$

 $2x - 3y + 4z = 13$
 $3x + 4y + 5z = 40$ (7)

(b) Solve following equation using Jacobi iterative method.

$$4x + y = 3$$

 $x + 3y - z = 4$
 $-y + 4z = 5$ (5)

- (c) Find the cube root of 2 using Regula-Falsi method. (3)
- 3. (a) Find the real root of the equation $\cos x 3x + 1 = 0$ using Newton-Raphson method, correct to four decimal places. (5)
 - (b) Find the polynomial f(x) using Lagrange's interpolation formula and hence find f(10) for:

 (5)

х	5	6	9	11	
у	12	13	14	16	

- (c) Compute $\int_0^1 \frac{1}{1+x^2} dx$ using Romberg's method correct to four decimal places. (5)
- 4. (a) Find y(0.4) using modified Euler's method correct to three decimal places. Given:

$$\frac{dy}{dx} = x - y^2$$
; $y(0.2) = 0.2$, taking $h = 0.2$. (6)

(b) Compute
$$\int_0^2 e^{-x^2} dx$$
 using Simpson's $1/3^{rd}$ rule. (5)

:

(c) Using the formula $f'(x_1) = \frac{f(x_2) - f(x_0)}{2h}$ and the Richardson extrapolation, find f'(3), the following table of values is given:

х	-1	1	2	3	4	5	7
f(x)	1	1	16	81	256	625	2401

5. (a) Using Runge-Kutta method of fourth order, solve the following differential equation for y at x = 1.2 and 1.4

$$\frac{dy}{dx} = \frac{2xy + e^{x}}{x^{2} + xe^{x}} \text{ given } x_{0} = 1, y_{0=0}.$$
 (7)

(b) Solve following system of equations using Gauss-Thomas method.

$$2x_{1} + 2x_{2} = 4$$

$$2x_{1} + 4x_{2} + 4x_{3} = 6$$

$$x_{2} + 3x_{3} + 3x_{4} = 7$$

$$2x_{3} + 5x_{4} = 10$$
(5)

- (c) Find a real root of the equation $x^2 2x 5 = 0$ using secant method. (3)
- 6. (a) Solve the differential equation $\frac{d^2y}{dx^2} = y + x(x-4)$, $0 \le x \le 4$ using finite difference method with y(0) = y(4) = 0 and n = 4 subintervals. (5)
 - (b) A curve passes through the points (0, 18), (1, 10), (3, -18) and (6, 90). Find the slope of the curve using Lagrange's formula at x = 2.

1532-D

4

(c) Find the value of cos(1.74) from the following table:

(4)

х	1.7	1.74	1.78	1.82	1.86
sin(x)	0.9916	0.9857	0.9781	0.9691	0.9584

7. Write short notes on:

(a) Efficient computations and convergence.

(5)

(b) Cubic spline interpolation.

(5)

(c) Ralston's method.

(5)