This question paper contains 4+1 printed pages]

Your Roll No.

5658

B.A. (Hons.)/II

D

DISCIPLINE CENTRED CONCURRENT COURSE

Maths other than Economics

(Algebra and Calculus)

(Admissions of 2005 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two questions from each Section.

Section A

1. (a) If
$$A = \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & b \\ 3 & 5 \end{bmatrix}$, find a and b

such that AB = BA. Compute 3A + 5B.

4

(b) Given
$$A = \begin{bmatrix} 2 & 8 \\ 3 & 0 \\ 5 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 \\ 3 & 8 \end{bmatrix}$. Calculate AB. Can

you calculate BA? Explain your answer.

3

2. (a) Find the inverse of the matrix

$$A = \begin{bmatrix} 4 & -2 & 1 \\ 7 & 3 & 3 \\ 2 & 0 & 1 \end{bmatrix}.$$

(b) Solve the following system of equations by Cramer's rule:

$$x - 4y - z = 11,$$

 $2x - 5y + 2z = 39,$
 $-3x + 2y + z = 1.$

3. (a) Find the length of major and minor axes, coordinates of foci, vertices and eccentricity and sketch the graph of ellipse $4x^2 + 25y^2 = 100$.

(b) Find the centre and radius of the given circle

$$x^2 + y^2 - x + 2y - 3 = 0.$$

Section B

4. (a) If

$$y = \frac{\log x}{x},$$

find $\frac{dy}{dx}$.

3

(b) Examine the concavity of the following function:

$$f(x) = x^3 - 3x^2 + 3x - 3.$$

5. (a) A function f is defined as,

$$f(x) = \begin{cases} x + 1, & \text{if } -1 \le x < 0 \\ x, & \text{if } 0 \le x < 1 \\ 2 - x, & \text{if } 1 \le x < 2 \end{cases}$$

Show that it is discontinuous at x = 0 but is continuous

at
$$x = 1$$
.

- (b) Prove that the curve $3y = x^3 3x^2 9x + 11$ has a maximum value at x = -1, a minimum value at x = 3 and a point of inflection at x = 1.
- 6. (a) Verify Lagrange's Mean Value Theorem for the function $f(x) = \sqrt{x^2 4} \text{ in } [2, 4].$
 - (b) Obtain Maclaurin's series expansion of $f(x) = e^x$.

Section C

7. (a) Find:

$$\int x^2 \sin x^3 dx$$
 3

- (b) Find the area of the region bounded by the curve $y = x^2$, the x-axis and the lines x = 2 and x = 3.
- 8. (a) Find the general solution of the differential equation

$$\frac{dy}{dx} = \frac{x+1}{2-y}, \ y \neq 2.$$

·	5)	5658
•	•	,	

(b) Evaluate:

$$\int x \cdot \log x \, dx \, .$$

9. (a) Solve

$$\frac{dy}{dx} = x\sqrt{x^2 + 1},$$

given that
$$y = 6$$
 at $x = 0$.

(b) Given MR = 2 - 6x, where MR denote marginal revenue

find revenue function R.