This question paper contains 16 printed pages]

Roll No.				

S. No. of Question Paper: 7671

Unique Paper Code

: 2271202

F-2

Name of the Paper

: Mathematical Methods for Economics—II [DC-1.4]

Name of the Course

: Bachelor with Honours in Economics

Semester

: II

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

(इस प्रश्न-पत्र के मिलते ही ऊपर दिए गए निर्धारित स्थान पर अपना अनुक्रमांक लिखिए ।)

Note: Answers may be written *either* in English *or* in Hindi; but the same medium should be used throughout the paper.

टिप्पणी : इस प्रश्न-पत्र का उत्तर अंग्रेज़ी या हिन्दी किसी एक भाषा में दीजिए; लेकिन सभी उत्तरों का माध्यम एक ही होना चाहिए ।

There are six questions in all. All questions are compulsory.

A simple calculator can be used.

कुल छ: प्रश्न हैं । सभी प्रश्न अनिवार्य हैं ।

साधारण कैलक्यूलेटर का उपयोग किया जा सकता है।

1. Answer any four of the following:

4×3

- (a) For any square matrix P, prove that $\frac{1}{2}(P + P')$ is symmetric and that $\frac{1}{2}(P P')$ is skew-symmetric, where P' is the transpose of P. Hence, verify that P can be written as a sum of a symmetric matrix and a skew-symmetric matrix. (Note: A square matrix P is called skew-symmetric if P' = -P.)
- (b) Find the equation of the line that passes through the points P = (1, 2, 3) and Q = (2, 4, 1). How would you denote the line segment that joins P and Q?
- (c) Find the equation of the line at the intersection of two planes given by x + y + z = 1 and x 2y + 3z = 1.
- (d) Prove that if a vector \mathbf{a} is orthogonal to vectors \mathbf{x}_1 and \mathbf{x}_2 , then it is orthogonal to the plane spanned by \mathbf{x}_1 and \mathbf{x}_2 .
- (e) Are the following vectors linearly independent?

$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 5 \\ -9 \\ 8 \end{bmatrix}.$$

If not, find the pattern of dependence between them.

निम्नलिखित में से किन्हीं चार के उत्तर दीजिये :

- (क) किसी वर्गाकार आव्यूह (square matrix) P के लिये सिद्ध कीजिये कि $\frac{1}{2}$ (P + P') समित (symmetric) होता है तथा $\frac{1}{2}$ (P P') तिर्यक-समित (skew-symmetric) होता है जहाँ P', P का परिवर्ती (transpose) है । इस प्रकार सत्यापित कीजिये कि P को एक समित तथा एक तिर्यक-समित आव्यूह के योगफल के रूप में लिखा जा सकता है । (नोट : एक वर्गाकार आव्यूह P को तिर्यक-समित कहा जाता है यदि P' = -P.)
- (ख) बिन्दुओं P = (1, 2, 3) तथा Q = (2, 4, 1) से गुज़रने वाली रेखा का समीकरण ज्ञात कीजिये । बिन्दुओं P व Q को जोड़ने वाले रेखाखण्ड को आप किस प्रकार निरूपित करेंगे ?
- (ग) समतलों x + y + z = 1 व x 2y + 3z = 1 के प्रतिच्छेदन पर स्थित रेखा का समीकरण ज्ञात कीजिये ।
- (घ) सिद्ध कीजिये कि यदि एक सदिश ${f a}$ सदिशों ${f x}_1$ व ${f x}_2$ के लम्बवत् है तो वह ${f x}_1$ तथा ${f x}_2$ द्वारा निर्मित समतल के लम्बवत् (orthogonal) है ।
- (ङ) क्या निम्नलिखित सदिश रैखिकत: स्वतन्त्र (linearly independent) हैं ?

$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 5 \\ -9 \\ 8 \end{bmatrix}.$$

यदि नहीं तो उनके मध्य निर्भरता का स्वरूप (pattern of dependence) ज्ञात कीजिये । P.T.O. 2. Answer any three of the following:

3×4

- (a) Show that the plane given by -x + 2z = 10 and the line given by x = 5, y = 2 t and z = 10 + 4t are neither orthogonal nor parallel.
- (b) Suppose **a** and **b** are two non-zero *n*-vectors. Prove the triangle inequality:

$$||a + b|| \le ||a|| + ||b||.$$

When is the above inequality satisfied as an exact equality?

(c) An economy has two industries A and B with the following input requirements:

Industry A requires 0.10 units of its own output and 0.60 units of industry B's output in order to produce 1 unit of output in A.

Similarly, industry B requires 0.50 units of industry A's output but none of its own output to produce 1 unit of output in B.

Suppose the final demands in industries A and B are given by 1000 units and 2000 units, respectively.

- (i) Write down the Leontief system for this economy.
- (ii) Find the output that must be produced in each industry in order to meet the final demands.

(d) For what value(s) of k does the following system of equations

$$x + y - z = 1$$

$$2x + 3y + kz = 3$$

$$x + ky + 3z = 2$$

have:

- (i) No solution
- (ii) A unique solution
- (iii) Infinite number of solutions.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिये:

- (क) दर्शाइये कि समतल -x + 2z = 10 तथा रेखा x = 5, y = 2 t व z = 10 + 4t न तो लम्बवत् (orthogonal) हैं न ही समानान्तर (parallel) हैं ।
- (ख) मान लीजिये a व b दो अशून्य n-सदिश हैं । निम्नलिखित त्रिभुज असिमका को सिद्ध कीजिये :

$$||a + b|| \le ||a|| + ||b||.$$

यह असमिका यथार्थ समिका (exact equality) के रूप में कब सन्तुष्ट होती है ?

(ग) एक अर्थव्यवस्था में दो उद्योग A तथा B हैं जिनकी आगत आवश्यकताएँ निम्न प्रकार हैं :

उद्योग A को A के उत्पाद की 1 इकाई बनाने के लिये अपने स्वयं उत्पाद की 0.10 इकाइयों व उद्योग B के उत्पाद की 0.60 इकाइयों की आवश्यकता होती है ।

इसी प्रकार उद्योग B को B के उत्पाद की 1 इकाई का निर्माण करने के लिये उद्योग A के उत्पाद की 0.50 इकाइयों की आवश्यकता होती है पर अपने स्वयं के उत्पाद की कोई आवश्यकता नहीं होती है ।

मान लीजिये उद्योगों A व B में अन्तिम मांगें क्रमश: 1000 इकाइयाँ तथा 2000 इकाइयाँ हैं।

- (i) इस अर्थव्यवस्था के लिये लियोण्टीफ तन्त्र (Leontief system) को लिखिये ।
- प्रत्येक उद्योग के उत्पाद की वे मात्राएँ लिखिये जो अन्तिम माँगों को पूरा करने
 के लिये बनाई जानी आवश्यक हैं।
- (घ) 'k' के किन मानों के लिये निम्नलिखित समीकरण निकाय

$$x + y - z = 1$$

$$2x + 3y + kz = 3$$

$$x + ky + 3z = 2$$

का:

- (i) कोई हल नहीं होता
- (ii) अद्वितीय (unique) हल होता है
- (iii) अनन्त हल होते हैं ।

3. Answer any three of the following:

3×4

(a) Find the domains of the following functions:

(i)
$$f(x, y) = \frac{1}{\sqrt{x-y}} + \sqrt{y}$$
,

(ii)
$$f(x, y) = \ln(1 - x^2 - y^2)$$

Hence, sketch the domains in the xy-plane.

- (b) Sketch the level curves for the following functions (corresponding to the heights as specified by k):
 - (i) $f(x, y) = (xy + 1)^2$, (x, y > 0), at height k = 4.
 - (ii) $g(x, y) = y^2 x^2$, at height k = 0.
- (c) Examine the definiteness of the following quadratic forms:

(i)
$$q(x, y) = -2x^2 + 6xy - 5y^2$$

- (ii) $q(u, v) = 4u^2 + 4uv + 3v^2$ subject to u 2v = 0.
- (d) Consider the function $f(x, y) = 4x^2y xy^3 + x$:
 - (i) Find the directional derivative of f at the point (2, 3) in the direction (1, 2).
 - (ii) In what direction should one move from the point (2, 3) to increase the value of the function most rapidly? Present your answer as a vector of length *l*.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिये :

(क) निम्नलिखित फलनों के परास (domain) ज्ञात कीजिये :

(i)
$$f(x, y) = \frac{1}{\sqrt{x - y}} + \sqrt{y},$$

(ii)
$$f(x, y) = \ln(1 - x^2 - y^2)$$

इससे xy-समतल में इन परासों के रेखाचित्र बनाइये ।

(ख) निम्नलिखित फलनों के स्तर वक्र बनाइये (k द्वारा दी गई ऊँचाइयों के संगत) :

(i)
$$f(x, y) = (xy + 1)^2$$
, $(x, y > 0)$, ऊँचाई $k = 4$ पर ।

(ii)
$$g(x, y) = y^2 - x^2$$
, ऊँचाई $k = 0$ पर

(ग) निम्नलिखित द्विघात पदों की निश्चितता (definiteness) का परीक्षण कीजिये:

(i)
$$q(x, y) = -2x^2 + 6xy - 5y^2$$

(ii)
$$q(u, v) = 4u^2 + 4uv + 3v^2$$
 यदि $u - 2v = 0$.

(घ) फलन $f(x, y) = 4x^2y - xy^3 + x$ पर विचार कीजिये :

- (i) f का बिन्दु (2, 3) पर दिशा (1, 2) में दिशात्मक अवकलज ज्ञात कीजिये I
- (ii) बिन्दु (2, 3) से फलन के मान को सर्वाधिक तेज़ी से बढ़ाने के लिये किस दिशा में चलना चाहिये ? अपने उत्तर को लम्बाई । के सदिश के रूप में प्रस्तुत कीजिये ।

4. Answer any three of the following:

 3×4

(a) The demand for good A is given by:

$$q_{\rm A}=kp_{\rm A}^{\alpha}p_{\rm B}^{\beta}, \quad \left(k,\,p_{\rm A},\,p_{\rm B}>0\right)$$

where α and β are constants, and p_A and p_B represent the prices of good A and a related good B, respectively:

- (i) Calculate the elasticities of demand for good A with respect to p_A , and with respect to p_B .
- (ii) What are the expected signs of α and β (assume that goods A and B are substitutes)?
- (b) Suppose the function $f(x_1, x_2)$ is homogeneous of degree 1 and $x_1 > 0$, $x_2 > 0$:
 - (i) Show that:

$$x_1 \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} + x_2 \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} = 0.$$

- (ii) If $\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} < 0$, what can you say about the sign of $\frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1}$? Interpret your result.
- (c) Are the following functions homothetic?

(i)
$$f(x, y) = e^{x^2 y} e^{xy^2}$$

(ii)
$$g(x, y) = \frac{x^4 + y^4}{xy}, x, y \neq 0.$$

Give reasons for your answer.

(d) Consider the following system of equations:

$$x + y_1 - 2y_2 = 0$$

$$x^2y_1 - y_2 = 0.$$

Solve for $\frac{dy_1}{dx}$ and $\frac{dy_2}{dx}$.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिये:

(क) वस्तु A की माँग निम्न प्रकार है:

$$q_{\rm A}=kp_{\rm A}^{\alpha}p_{\rm B}^{\beta},~\left(k,\,p_{\rm A},\,p_{\rm B}>0\right)$$

जहाँ α व β स्थिरांक हैं, तथा p_A व p_B क्रमश: वस्तु A व एक सम्बन्धित वस्तु B की कीमतें हैं :

- (i) वस्तु $_{
 m A}$ की मांग की $_{
 m P_A}$ के सापेक्ष व $_{
 m P_B}$ के सापेक्ष लोचों की गणना कीजिये ।
- (ii) α व β के प्रत्याशित चिन्ह क्या हैं (मान लीजिये कि वस्तुएँ A व B स्थानापन्न (substitutes) हैं ।) ?
- (ख) मान लीजिये कि फलन $f(x_1, x_2)$ कोटि 1 का समघात फलन है तथा $x_1 > 0$. $x_2 > 0$:
 - (i) दर्शाइये कि :

$$x_1 \frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} + x_2 \frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1} = 0.$$

(ii) यदि $\frac{\partial^2 f(x_1, x_2)}{\partial x_1^2} < 0$, तो आप $\frac{\partial^2 f(x_1, x_2)}{\partial x_2 \partial x_1}$ के चिन्ह के बारे में क्या कह सकते हैं ? अपने उत्तर की व्याख्या कीजिये ।

(ग) क्या निम्नलिखित फलन होमोथैटिक (homothetic) हैं ?

(i)
$$f(x, y) = e^{x^2 y} e^{xy^2}$$

(ii)
$$g(x, y) = \frac{x^4 + y^4}{xy}, x, y \neq 0.$$

अपने उत्तर के लिये कारण दीजिये।

(घ) निम्नलिखित समीकरण निकाय पर विचार कीजिये :

$$x + y_1 - 2y_2 = 0$$

$$x^2y_1 - y_2 = 0.$$

इसे $\frac{dy_1}{dx}$ तथा $\frac{dy_2}{dx}$ के लिये हल कीजिये ।

- 5. Answer any three of the following:
 - (a) Locate all extreme points and/or saddle points of the function:

$$f(x, y) = 2x^2 - 4xy + y^4 - 2.$$

Show that f does not have a global maximum.

- (b) Consider the function $f(x) = \frac{10}{x}$, $1 \le x \le 10$:
 - (i) The upper level set for f is defined as $P_a = \{x : f(x) \ge a\}$, where a is any real number. Draw a graph of the function and mark its upper level set for a = 2.
 - (ii) Is f quasi-concave? Explain your answer.

 3×5

- (c) For what values of the constant 'a' is the following function:
 - (i) concave,
 - (ii) convex, and
 - (iii) neither concave nor convex:

$$f(x, y) = ax(1 - x) + 2xy - y(y + 4).$$

- (d) Determine whether the following sets:
 - (i) $S = \{(x, y) : y \le 9 x^2\}$ and
 - (ii) $T = \{(x, y) : x \ge 0, y \ge 0, x + y \le 1\}$

are

- (i) closed
- (ii) bounded
- (iii) compact.

Justify your answers.

निम्नलिखित में से किन्हीं तीन के उत्तर दीजिये:

(क) निम्नलिखित फलन के सभी चरम (extreme) व/या उदासीन (saddle) बिन्दु ज्ञात कीजिये :

$$f(x, y) = 2x^2 - 4xy + y^4 - 2.$$

दर्शाइये कि f का कोई वैश्विक उच्चिष्ठ (global maximum) नहीं है ।

- (ख) फलन $f(x) = \frac{10}{x}$, $1 \le x \le 10$ पर विचार कीजिये :
 - (i) f का उच्चतर स्तर समुच्चय (upper level set) $P_a = \{x: f(x) \geq a\}$ के रूप में \cdot परिभाषित है, जहाँ a कोई वास्तविक संख्या है । इस फलन का आरेख बनाइये तथा a=2 के लिये इसका उच्चतर समुच्चय चिन्हित कीजिये ।
 - (ii) क्या f अर्द्ध-अवतल है (quasi-concave) ? अपने उत्तर को समझाइये ।
- (ग) स्थिरांक 'a' के किन मानों के लिये निम्नलिखित फलन :
 - (i) अवतल (concave) है
 - (ii) उत्तल (convex) है तथा
 - (iii) न तो अवतल है न ही उत्तल :

$$f(x, y) = ax(1 - x) + 2xy - y(y + 4).$$

- (घ) निर्धारित कीजिये कि क्या निम्नलिखित समुच्चय :
 - (i) $S = \{(x, y) : y \le 9 x^2\}$ तथा
 - (ii) $T = \{(x, y) : x \ge 0, y \ge 0, x + y \le 1\}$
 - (i) बन्द (closed) हैं
 - (ii) बद्ध (bounded) हैं
 - (iii) सघन (compact) हैं ।
 - अपने उत्तरों के लिये उचित कारण दीजिये ।

6. Answer any two of the following:

2×6

(a) A firm uses inputs L and K to produce a target level of output Q = LK. The prices per unit of L and K are w and r, respectively. Using the Lagrangean method, solve the following minimization problem:

$$\operatorname{Min}_{L, K} C(L, K) = wL + rK$$

subject to

$$Q = LK$$

- (i) Find the cost minimizing inputs L* and K*.
- (ii) Find the optimal value function C^* as a function of w, r and Q.
- (iii) Apply the envelope theorem to find the derivative of the optimal value function $C^*(w, r, Q)$ with respect to Q.
- (b) Solve, using the Lagrangean method, the following problem:

$$\operatorname{Min}_{x, y} f(x, y) = x + y$$

subject to

$$x^2-y=1.$$

Also explain the problem geometrically by drawing appropriate level curves for f together with the graph of the parabola $x^2 - y = 1$. Does the associated maximization problem have a solution? Justify your answer.

(c) Consider the function:

$$f(x, y) = -\frac{1}{3}x^3 + x - y^2$$

defined over the set:

$$S = \{(x, y) : -2 \le x \le 2, -2 \le y \le 2\}.$$

Find the maximum value of the function f over the set defined by S.

निम्नलिखित में से किन्हीं दो के उत्तर दीजिये:

(क) एक फर्म अपने उत्पाद Q = LK के लक्ष्य स्तर का उत्पादन करने के लिये दो आगतों L = K का उपयोग करती है । L = K की प्रति इकाई कीमतें क्रमशः w = r हैं । लैग्रांजे की विधि से निम्नलिखित न्यूनतमीकरण समस्या को हल कीजिये :

$$\underset{L,K}{\text{Min}} C(L, K) = wL + rK$$

यदि

Q = LK

- (i) आगतों की लागत न्यूनतम करने वाली मात्राएँ L^* व K^* ज्ञात कीजिये ।
- (ii) इष्टतम (optimal) मान फलन C* को w, r व Q के फलन के रूप में ज्ञात कीजिये।
- (iii) आवरण प्रमेय (envelope theorem) के प्रयोग से इष्टतम मान फलन C*(w, r, Q) का Q के सापेक्ष अवकलज ज्ञात कीजिये।

(ख) लैग्रांजे की विधि की सहायता से निम्नलिखित समस्या को हल कीजिये:

$$\operatorname{Min}_{x, y} f(x, y) = x + y$$

यदि

$$x^2 - y = 1.$$

f के लिये उपयुक्त स्तर वक्र व परवलय (parabola) $x^2-y=1$ का आरेख बनाकर इस समस्या को ज्यामितीय रूप से भी समझाइये । क्या सम्बन्धित अधिकतमीकरण समस्या का कोई हल है ? अपने उत्तर के लिये उचित कारण दीजिये ।

(ग) समुच्चय :

$$S = \{(x, y) : -2 \le x \le 2, -2 \le y \le 2\}$$

पर परिभाषित फलन :

$$f(x, y) = -\frac{1}{3}x^3 + x - y^2$$

पर विचार कीजिये । S द्वारा परिभाषित समुच्चय में फलन f का अधिकतम मान ज्ञात कीजिये ।