[This question paper contains 3 printed pages.]

Your Roll No.

5231

B.A. (Hon.) Programme

R

Discipline Centred Concurrent Course - Economics

(For Economics Hons.)

(Maths: Elements of Analysis)

(Admissions of 2005 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two questions from each section.

SECTION A

 (a) Define Supremum and infimum of a set of real numbers. Give an example of a set whose Supremum and infimum do not belong to it.

(2+2)

(b) If
$$\langle a_n \rangle \to 0$$
 and $\langle b_n \rangle$ is bounded. Prove that $\langle a_n b_n \rangle \to 0$. (4)

2. State Cauchy's 2nd theorem on limits

Prove
$$\lim \left\{ \frac{|2n|}{\left(\frac{|n|}{n} \right)^2} \right\}^{\frac{1}{n}} = 4$$
. (2+6)

3. Define $\langle a_n \rangle$ as:

$$a_1 = 8$$
, $a_{n+1} = 2 + \frac{1}{2} a_n$

Show that $\langle a_n \rangle$ is monotonic and bounded. Also find its limit. (6+2)

SECTION B

4. Test the following Series for convergence or divergence:

(i)
$$\sum_{x=1}^{\infty} \frac{1}{\sqrt{x} + \sqrt{x+1}}$$

(ii)
$$\sum_{x=1}^{\infty} \frac{x^{x^2}}{(x+1)^{x^2}}$$
 (3+3)

5. Test the convergence of the following Series:

(i)
$$\sum_{x=1}^{\infty} \frac{5^x}{x^2+5}$$

(ii)
$$\frac{1}{5} + \frac{2!}{5^2} + \frac{3!}{5^3} + \frac{4!}{5^4} + \dots$$
 (3+3)

6. Test for convergence and absolute convergence of the following Series:

(i)
$$\sum_{x=1}^{\infty} \frac{\left(-1\right)^{x-1}}{x\sqrt{x}}$$

(ii)
$$\frac{1}{1\cdot 2} - \frac{1}{3\cdot 4} + \frac{1}{5\cdot 6} - \frac{1}{7\cdot 8} + - - - -$$
 (3+3)

SECTION C

Define Power Series and its radius of convergence.
 Determine the radius of convergence and the exact interval of convergence of the following power series:

$$\sum \frac{(n+1) x^n}{(n+2)(n+3)} \tag{5}$$

8. Show that

$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

$$-1 \le x \le 1$$
 (5)

9. Write down the power series expansion of ex. (5)