This question paper contains 3 printed pages.]

Your Roll No.

5228

B.A. (Hons.) Programme B DISCIPLINE CENTRED CONCURRENT COURSE

(Maths for other than Economics)

(Algebra and Calculus)

(Admission of 2005 and onwards)

Time: 2 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory and carries eight marks.

Attempt six more questions from the remaining Question

No. 2 to 10, selecting two questions each from

Sections I, II and III.

Each question carries 5 marks.

1. (i) Let
$$f(x) = \begin{cases} 3-x, & x < 2 \\ \frac{x}{2} + 1, & x > 2 \end{cases}$$

Does $\lim_{x \to 2} f(x)$ exist? If so, what is it, if not why not?

(ii) Does the set of vectors $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$ span \mathbb{R}^2 ?

Justify.

2

2

(iii) Find $\frac{dy}{dx}$ for the function $y = \cos^2(3x^3 + y)$.

2

(iv) Find the length of the curve $y = x^2$, $-1 \le x \le 2$.

SECTION - I

2. Solve the following system of linear equations:

$$x + y + 3z = 1$$

 $2x + 3y - z = 3$
 $5x + 7y + z = 7$

- 3. Find the equation of the parabola that is symmetric about the y-axis, has its vertex at the origin and passes through the point (5, 2).
- 4. Let $f(x) = \frac{x^3}{4} + 1$ on [0, 2]. Use Mean Value Theorem to show that at some point C in (0, 2), the tangent is inclined at an angle of $\frac{\pi}{4}$ to the x-axis. Find this C by actual calculation.

SECTION - II

5. Let $f(x) = \ln x = \log_e x$, $\frac{1}{3} \le x \le 3$. Find points x where the slope of the tangent to the above curve is (i) 1, (ii) $\frac{1}{2}$, (iii) 2.

Display this in a rough sketch.

What is f(x) when $x = e^2$?

- 6. Find the greatest and the least values of the function $f(x) = x^3 9x^2 + 24x$ in [0, 6].
- 7. Write McLaurin's series for the function $f(x) = \cos x$ for any real no. x.

SECTION - III

8. Evaluate

(i)
$$\int \cos^3 2x \, dx$$

(ii)
$$\int x(x^2+1)^{2/3} dx$$

- 9. Find the arc length of the curve $y = 3x^{\frac{3}{2}} 1$ from x = 0 to x = 1.
- 10. The population of a country is assumed to grow as $y(t) = y(0) e^{kt}$ where t is the time elapsed from the beginning, y(t) is the population at time t and k is the growth constant.

If the population doubles itself every 40 years, find k.

Also express the growth rate in percentage.