[This question paper contains 4 printed pages.]

5234 ** Your Roll (No.

B.A. (Hons.) Programme

ž

DISCIPLINE CENTRED CONCURRENT COURSE

ECONOMICS

(For Economics Hons.)

(Maths: Linear Algebra and Calculus)

(Admissions of 2005 and onwards)

Time: 2 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt six questions in all, selecting two questions from each section.

SECTION I

- (a) Define a subspace of vector space R³ over R.
 Determine whether the following subsets of R³ are subspaces or not:
 - (i) W₁ = $\{(x, y, z) / x + y = z\}$
 - (ii) $W_2 = \{(x, y, z) / x = 3z, y = 2x\}$ (4)

P.T.O.

(b) Find the linear span of subset S of vector space R³ over R, where

(i)
$$S = \{(x, 2y, x + 2y) : x, y \in R\}$$

(ii) $S = \{(x, y, z) : x = 0\}$ (4)

(a) Find a matrix of linear transformation 2.

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by
$$T(x, y, z) = (x + y + z, -y, y + 2z)$$
 w.r.t. standard bases. (4)

(b) Verify rank-nullity theorem for linear transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 such that
 $T(x, y) = (x, x + y, y)$ (4)

(a) If u and v are vectors in Rⁿ, then prove that $|\langle u, v \rangle| \le ||u|| ||v||$

where
$$|\cdot|$$
 on the left hand side stands for absolute value of real number and $<$, $>$ is a standard inner product on \mathbb{R}^n .

(4)

(b) For an orthogonal matrix A, show that det $A = \pm 1$. Give example of a 2×2 matrix A, such that A is orthogonal and det A = -1. **(4)**·

SECTION II

4. (a) Use $\in -\delta$ definition to prove that the following function is continuous at x = 0

$$f(x) = \begin{cases} x \cos \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 (6)

- 5. (a) State Intermediate Value theorem.
 - (b) Let f and g-be continuous on [a, b] and f(a) < g(a)
 but f(b) > g(b). Prove that f(c) = g(c) for some c
 in (a, b).
- 6. State Lagrange's Mean theorem.

Show that the function

$$f(x) = x^{1/3}, x \in [-1, 1]$$

does not satisfy the hypothesis of Langrange Mean Value theorem but still satisfies the conclusion.

(2+4)

SECTION III

7. Show that if f(x, y) is differentiable at a point (a, b) in the domain of f, then f is continuous at (a, b).
 Show that the converse is not true. (5)

8. Show that the following function

$$f(x, y) = x^2 - 3xy^2 + 2y^4$$

has neither a maximum nor a minimum value at the origin. (5)

State Taylor's theorem for a function of two variables and use it to expand x⁴ + x²y² - y⁴ about the point (1, 1) upto terms of second degree.