[This question paper contains 6 printed pages.]

5205

Your Roll No.

Concurrent Courses for B.A. (Hons.) Prog. B

MATHEMATICAL AWARENESS

(Qualifying)

Time: 2 Hours

Maximum Marks: 50

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt all questions as per directions questionwise.

UNIT - I

1. Do any two parts:

- (a) (i) Isaac Newton entered Trinity College, Cambridge in 1661 as a sizar. How did the sizars earn their keep?
 - (ii) Which book was at the core of mathematical education for about 2000 years in the western world?
 - (iii) Who said the following in a faculty meeting:

 "After all, we are a university, not a bathing establishment", to secure Emmy Noether an academic position in Gottingen?

- (iv) Name the broad area in which Riemann wrote this doctoral thesis.
- (v) In 1918 Ramanujan was elected to two prestigious fellowships. Name any one of them.
- (vi) In which book did Newton develop the idea of gravitation based on the inverse square law?
 (6)
- (b) (i) Name two mathematicians who influenced Riemann's work the most.
 - (ii) In 1693 Newton left Cambridge. What was his new assignment.
 - (iii) Where was Srinivas Ramanujan born?
 - (iv) In 1908 Emmy Noether completed her dissertation under a collegue of her father.

 Who was he?
 - (v) To whom was Weyl referring when he wrote: "And of all I have known, she was certainly one of the happiest"?
 - (vi) Name the goddess Ramanujan himself attributed his excellent powers to. (6)
- (c) State which of the following statements are true or false. If false, give the correct answer.

- (i) Euclids geometry mainly deals with the geometry of triangles and circles.
- (ii) Newton calculated the curve a planet would describe under the inverse square law. It was a parabola.
- (iii) Ramanujan received all his early education in Kumbhakonam.
- (iv) Riemann's thesis on trigonometric series presented to the university in 1853 was published only after his death.
- (v) The main problem faced by Ramanujan on his arrival at London was the difficulty in getting proper food.
- (vi) Newton discovered the series for log (1+x).

UNIT - II

2. Do any three parts:

(a) (i) What is casting out nines. Use it to check if the following computation is probably correct or definitely wrong:

35897 + 750971 + 908085 = 1684953.

(ii) Determine if the number 18 is deficient or abundant.(5)

P.T.O.

- (b) (i) Verify that 1184 and 1210 is an amicable pair.
 - (ii) Determine the rational number determined by the following continued fraction:

$$[3; 4, 1, 4, 2].$$
 (5)

(c) (i) Using Fundamental Theorem of Arithmetic find the number of zeroes trailing 224!

OR

Use Legendre's form of approximation for finding the number of primes less than or equal to 10^3 .

- (ii) Show that 341 is a pseudoprime. (5)
- (d) Mark True or False, where a, b, c and d are arbitrary integers, m is a positive integer and p is a prime. If the statement is false then give a counter example to disprove the statement,
 - (i) If $a^2 \equiv b^2 \pmod{m}$ then $a \equiv b \pmod{m}$.
 - (ii) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then $(a+c) \equiv (b+d) \pmod{m}$.
 - (iii) If $a \not\equiv 0 \pmod{m}$ and $b \not\equiv 0 \pmod{m}$ then $ab \not\equiv 0 \pmod{m}$.
 - (iv) If $ac \equiv bc \pmod{p}$ and $p \nmid c$ then $a \equiv b \pmod{p}$. (5)

UNIT - III

- 3. Do any three parts:
 - (a) Write shorts on any four of the following:
 - (i) Ercher's Art
 - (ii) Basic. Tilings
 - (iii) Fire Altars
 - (iv) Four Color Map Problem
 - (v) Genus (5)
 - (b) (i) Give the set of symmetrics of an isosceles triangle. Show that it forms a group.
 - (ii) Verify Euler's formula for the following regular polyhedra
 - (i) Cube (ii) Dodecahedron (iii) Icosahedron
 (5)
 - (c) (i) Explain the difference in the paintings before and after the development of perspective geometry.
 - (ii) Explain how the 'Rabbit Problem' leads to the introduction of Fibonacci numbers. (5)
 - (d) (i) Find the domain and range of the following functions
 - (i) $f(x) = x + 1, x \in [0, 1]$
 - (ii) $f(x) = x 1, x \in [3, 4]$
 - (iii) $f(x) = x^2, x \in [-1, 1]$

P.T.O.

- (ii) Write short notes on any two of the following:
 - (i) Möbius Strip
 - (ii) Königsberg Bridge Problem
 - (iii) Coastline fractal (5)

UNIT - IV

- 4. Do any two parts:
 - (a) Six cards are drawn from an ordinary pack of 52 cards. What is the probability that 3 will be black and 3 red?

 (4)
 - (b) Draw a graph of the following problem, show the feasible region and solve

Max
$$Z = 2X + Y$$

Subject to the constraints

$$5X + 10Y \le 50$$

$$X + Y \ge 1$$

$$X - Y \le 0$$

$$X \ge 0$$

$$Y \ge 0$$
(4)

(c) Calculate the first and the third quartile of the following data:

Values : 5-6 6-7 7-8 8-9 9-10 10-11
Frequencies : 5 8 12 15 6 2
(4)